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6.1 Human-Machine Interaction

Thomas B. Sheridan

Over the years machines of all kinds have been improved and made more reliable. However, machines
typically operate as components of larger systems, such as transportation systems, communica
systems, manufacturing systems, defense systems, health care systems, and so on. While many aspects
of such systems can be and have been automated, the human operator is retained in many cases. This
may be because of economics, tradition, cost, or (most likely) capabilities of the human to perceive
patterns of information and weigh subtle factors in making control decisions which the machine can
match.

Although the public as well as those responsible for system operation usually demand that th
a human operator, “human error” is a major reason for system failure. And aside from prevention of
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error, getting the best performance out of the system means that human and machine must be working
together effectively — be properly “impedance matched.” Therefore, the performance capabilities of th
human relative to those of the machine must be taken into account in system design.

Efforts to “optimize” the human-machine interaction are meaningless in the mathematical se
optimization, since most important interactions between human and machine cannot be reduc
mathematical form, and the objective function (defining what is good) is not easily obtained in any given
context. For this reason, engineering the human-machine interaction, much as in management o
icine, remains an art more than a science, based on laboratory experiments and practical experience.

In the broadest sense, engineering the human-machine interface includes all of ergonomics or human
factors engineering, and goes well beyond design of displays and control devices. Ergonomics includes
not only questions of sensory physiology, whether or not the operator can see the displays or hear
auditory warnings, but also questions of biomechanics, how the body moves, and whether or not the
operator can reach and apply proper force to the controls. It further includes the fields of operator
selection and training, human performance under stress, human factors in maintenance, and many other
aspects of the relation of the human to technology. This section focuses primarily on human-machin
interaction in control of systems.

The human-machine interactions in control are considered in terms of Figure 6.1.1. In Figure 6.1.1a
the human directly controls the machine; i.e., the control loop to the machine is closed throu
physical sensors, displays, human senses (visual, auditory, tactile), brain, human muscles, control devices,
and machine actuators. Figure 6.1.1b illustrates what has come to be called a supervisory control system,
wherein the human intermittently instructs a computer as to goals, constraints, and procedure
turns a task over to the computer to perform automatic control for some period of time.

Displays and control devices can be analogic (movement signal directions and extent of control action,
isomorphic with the world, such as an automobile steering wheel or computer mouse controls,
moving needle or pictorial display element). Or they can be symbolic (dedicated buttons or general-
purpose keyboard controls, icons, or alarm light displays). In normal human discourse we use
speech (symbolic) and gestures (analogic) and on paper we write alphanumeric text (symbolic) and draw
pictures (analogic). The system designer must decide which type of displays or controls best s
particular application, and/or what mix to use. The designer must be aware of important criteria such
as whether or not, for a proposed design, changes in the displays and controls caused by the
operator correspond in a natural and common-sense way to “more” or “less” of some variable as expected
by that operator and correspond to cultural norms (such as reading from left to right in western cou
and whether or not the movement of the display elements correspond geometrically to movements of
the controls.

FIGURE 6.1.1 Direct manual control (a) and supervisory control (b).
© 1999 by CRC Press LLC
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Direct Manual Control

In the 1940s aircraft designers appreciated the need to characterize the transfer function of the
pilot in terms of a differential equation. Indeed, this is necessary for any vehicle or controlled physical
process for which the human is the controller, see Figure 6.1.2. In this case both the human operator H
and the physical process P lie in the closed loop (where H and P are Laplace transforms of the compone
transfer functions), and the HP combination determines whether the closed-loop is inherently stable 
the closed loop characteristic equation 1 + HP = 0 has only negative real roots).

In addition to the stability criterion are the criteria of rapid response of process state x to a desired
or reference state r with minimum overshoot, zero “steady-state error” between r and output x, and
reduction to near zero of the effects of any disturbance input d. (The latter effects are determined by
the closed-loop transfer functions x = HP/(1 + HP)r + 1/(1 + HP)d, where if the magnitude of H is
large enough HP/(1 + HP) approaches unity and 1/(1 + HP) approaches 0. Unhappily, there are
ingredients of H which produce delays in combination with magnitude and thereby can cause instay.
Therefore, H must be chosen carefully by the human for any given P.)

Research to characterize the pilot in these terms resulted in the discovery that the human adapts to 
wide variety of physical processes so as to make HP = K(1/s)(e–sT). In other words, the human adjusts
H to make HP constant. The term K is an overall amplitude or gain, (1/s) is the Laplace transform of
an integrator, and (e-sT) is a delay T long (the latter time delay being an unavoidable property of the
nervous system). Parameters K and T vary modestly in a predictable way as a function of the physical
process and the input to the control system. This model is now widely accepted and used, not only i
engineering aircraft control systems, but also in designing automobiles, ships, nuclear and chem
plants, and a host of other dynamic systems.

Supervisory Control

Supervisory control may be defined by the analogy between a supervisor of subordinate staff in an
organization of people and the human overseer of a modern computer-mediated semiautomatic contro
system. The supervisor gives human subordinates general instructions which they in turn may translate
into action. The supervisor of a computer-controlled system does the same.

Defined strictly, supervisory control means that one or more human operators are setting in
conditions for, intermittently adjusting, and receiving high-level information from a computer that itsel
closes a control loop in a well-defined process through artificial sensors and effectors. For some time
period the computer controls the process automatically.

By a less strict definition, supervisory control is used when a computer transforms human opera
commands to generate detailed control actions, or makes significant transformations of measured da
to produce integrated summary displays. In this latter case the computer need not have the capability to
commit actions based upon new information from the environment, whereas in the first it necessarily
must. The two situations may appear similar to the human supervisor, since the computer mediates bot
human outputs and human inputs, and the supervisor is thus removed from detailed events at the low level.

FIGURE 6.1.2 Direct manual control-loop analysis.
© 1999 by CRC Press LLC
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A supervisory control system is represented in Figure 6.1.3. Here the human operator issues comman
to a human-interactive computer capable of understanding high-level language and providing integrated
summary displays of process state information back to the operator. This computer, typically located in
a control room or cockpit or office near to the supervisor, in turn communicates with at least one, an
probably many (hence the dotted lines), task-interactive computers, located with the equipment they are
controlling. The task-interactive computers thus receive subgoal and conditional branching informatio
from the human-interactive computer. Using such information as reference inputs, the task-interacive
computers serve to close low-level control loops between artificial sensors and mechanical actuator
i.e., they accomplish the low-level automatic control.

The low-level task typically operates at some physical distance from the human operator and h
human-friendly display-control computer. Therefore, the communication channels between compu
may be constrained by multiplexing, time delay, or limited bandwidth. The task-interactive computer,
of course, sends analog control signals to and receives analog feedback signals from the controlle
process, and the latter does the same with the environment as it operates (vehicles moving relative to
air, sea, or earth, robots manipulating objects, process plants modifying products, etc.).

Supervisory command and feedback channels for process state information are shown in Figure 6.1.3
to pass through the left side of the human-interactive computer. On the right side are represented decisio
aiding functions, with requests of the computer for advice and displayed output of advice (fr
database, expert system, or simulation) to the operator. There are many new developments in computer-
based decision aids for planning, editing, monitoring, and failure detection being used as an auxilia
part of operating dynamic systems. Reflection upon the nervous system of higher animals reveals a
similar kind of supervisory control wherein commands are sent from the brain to local ganglia, and
peripheral motor control loops are then closed locally through receptors in the muscles, tendons, 
The brain, presumably, does higher-level planning based on its own stored data and “mental models,”
an internalized expert system available to provide advice and permit trial responses before commitm
to actual response.

Theorizing about supervisory control began as aircraft and spacecraft became partially automate
became evident that the human operator was being replaced by the computer for direct control resp
sibility, and was moving to a new role of monitor and goal-constraint setter. An added incentive was the
U.S. space program, which posed the problem of how a human operator on Earth could control 

FIGURE 6.1.3 Supervisory control.
© 1999 by CRC Press LLC
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manipulator arm or vehicle on the moon through a 3-sec communication round-trip time delay. The only
solution which avoided instability was to make the operator a supervisory controller communicati
intermittently with a computer on the moon, which in turn closed the control loop there. The rapid
development of microcomputers has forced a transition from manual control to supervisory con
a variety of industrial and military applications (Sheridan, 1992).

Let us now consider some examples of human-machine interaction, particularly those which illustr
supervisory control in its various forms. First, we consider three forms of vehicle control, namely, control
of modern aircraft, “intelligent” highway vehicles, and high-speed trains, all of which have both human
operators in the vehicles as well as humans in centralized traffic-control centers. Second, we conside
telerobots for space, undersea, and medical applications.

Advanced Control of Commercial Aircraft

Flight Management Systems

Aviation has appreciated the importance of human-machine interaction from its beginning, and today
exemplifies the most sophisticated forms of such interaction. While there have been many good examples
of display and control design over the years, the current development of the flight management system
(FMS) is the epitome. It also provides an excellent example of supervisory control, where the pilot flies
the aircraft by communicating in high-level language through a computer intermediary. The FMS is a
centralized computer which interacts with a great variety of sensors, communication from the groun
as well as many displays and controls within the aircraft. It embodies many functions and mediates mos
of the pilot information requirements shown in Figure 6.1.4. Gone are the days when each sensor h
its own display, operating independently of all other sensor-display circuits. The FMS, for example,
brings together all of the various autopilot modes, from long-standing low-level control modes, wherein
the aircraft is commanded to go to and hold a commanded altitude, heading, and speed, to
sophisticated modes where the aircraft is instructed to fly a given course, consisting of a sequence 
way points (latitudes and longitudes) at various altitudes, and even land automatically at a given airport
on a given runway.

FIGURE 6.1.4 Pilot information requirements. (From Billings, 1991.)
© 1999 by CRC Press LLC
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Figure 6.1.5 illustrates one type of display mediated by the FMS, in this case integrating many formerly
separate components of information. Mostly it is a multicolor plan-view map showing position and
orientation of important objects relative to one’s own aircraft (the triangle at the bottom). It shows
heading (compass arc at top, present heading 175°), ground speed plus wind speed and wind directi
(upper left), actual altitude relative to desired altitude (vertical scale on right side), programmed cour
connecting various way points (OPH and FLT), salient VOR radar beacons to the right and left of prese
position/direction with their codes and frequencies (lower left and right corners), the location of key
VORs along the course (three-cornered symbols), the location of weather to be avoided (two gray blobs),
and a predicted trajectory based on present turn rate, showing that the right turn is appropriately gettin
back on course.

Programming the FMS is done through a specialized keyboard and text display unit (Figure 6.1.6)
having all the alphanumeric keys plus a number of special function keys. The displays in this case are
specialized to the different phases of a flight (taxi, takeoff, departure, enroute approach, land, etc.), ea
phase having up to three levels of pages.

The FMS makes clear that designing displays and controls is no longer a matter of what can bbuilt
— the computer allows essentially any conceivable display/control to be realized. The computer can
also provide a great deal of real-time advice, especially in emergencies, based on its many sensors and
stored knowledge about how the aircraft operates. But pilots are not sure they need all the information
which aircraft designers would like to give them, and have an expression “killing us with kindness” to
refer to this plethora of available information. The question is what should be designed based on
needs and capabilities of the pilot.

Boeing, McDonnell Douglas, and Airbus have different philosophies for designing the FMS. Airbus
has been the most aggressive in automating, intending to make piloting easier and safer for pilots from
countries with less well established pilot training. Unfortunately, it is these most-automated aircra
which have had the most accidents of the modern commercial jets — a fact which has precipitated
vigorous debate about how far to automate.

FIGURE 6.1.5 Integrated aircraft map display. (From Billings, 1991.)
© 1999 by CRC Press LLC
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Air Traffic Control

As demands for air travel continue to increase, so do demands for air traffic control. Given wh
currently regarded as safe separation criteria, air space over major urban areas is already satu
that simply adding more airports is not acceptable (in addition to which residents do not want
airports, with their noise and surface traffic). The need is to reduce separations in the air, and 
aircraft closer together or on parallel runways simultaneously. This puts much greater demands
traffic controllers, particularly at the terminal area radar control centers (TRACONs), where tr
operators stare at blips on radar screens and verbally guide pilots entering the terminal airspa
various directions and altitudes into orderly descent and landing patterns with proper separation b
aircraft.

Currently, many changes are being introduced into air traffic control which have profound implica
for human-machine interaction. Where previously communication between pilots and air traffic co
lers was entirely by voice, now digital communication between aircraft and ground (a system 
datalink) allows both more and more reliable two-way communication, so that weather and runwa
wind information, clearances, etc. can be displayed to pilots visually. But pilots are not so sur
want this additional technology. They fear the demise of the “party line” of voice communications
which they are so familiar and which permits all pilots in an area to listen in on each other’s convers

New aircraft-borne radars allow pilots to detect air traffic in their own vicinity. Improved grou
based radars detect microbursts or wind shear which can easily put an aircraft out of control. Bot
of radars pose challenges as to how best to warn the pilot and provide guidance as to how to r
But they also pose a cultural change in air traffic control, since heretofore pilots have been dep
upon air traffic controllers to advise them of weather conditions and other air traffic. Furthermore, b
of the new weather and collision-avoidance technology, there are current plans for radically alter
rules whereby high-altitude commercial aircraft must stick to well-defined traffic lanes. Instead, 

FIGURE 6.1.6 Flight management system control and display unit. (From Billings, 1991.)
© 1999 by CRC Press LLC
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will have great flexibility as to altitude (to find the most favorable winds and therefore save fuel
be able to take great-circle routes straight to their destinations (also saving fuel). However, air
controllers are not sure they want to give up the power they have had, becoming passive observ
monitors, to function only in emergencies.

Intelligent Highway Vehicles

Vehicle Guidance and Navigation Systems

The combination of GPS (global positioning system) satellites, high-density computer storage o
data, electronic compass, synthetic speech synthesis, and computer-graphic displays allows c
trucks to know where they are located on the Earth to within 100 m or less, and can guide a d
a programmed destination by a combination of a map display and speech. Some human factor ch
are in deciding how to configure the map (how much detail to present, whether to make the map
up with a moving dot representing one’s own vehicle position or current-heading-up and rapidly cha
with every turn). The computer graphics can also be used to show what turns to anticipate and
lane to get in. Synthetic speech can reinforce these turn anticipations, can caution the driver 
perceived to be headed in the wrong direction or off course, and can even guide him or her how
back on course. An interesting question is what the computer should say in each situation to 
driver’s attention, to be understood quickly and unambiguously but without being an annoyance. A
question is whether or not such systems will distract the driver’s attention from the primary tasks, t
reducing safety. The major vehicle manufacturers have developed such systems, they have been e
for reliability and human use, and they are beginning to be marketed in the United States, Euro
Japan.

Smart Cruise Control

Standard cruise control has a major deficiency in that it knows nothing about vehicles ahead, a
can easily collide with the rear end of another vehicle if not careful. In a smart cruise control sys
microwave or optical radar detects the presence of a vehicle ahead and measures that distance. 
is a question of what to do with this information. Just warn the driver with some visual or aud
alarm (auditory is better because the driver does not have to be looking in the right place)? Can a 
be too late to elicit braking, or surprise the driver so that he brakes too suddenly and causes a 
accident to his own vehicle. Should the computer automatically apply the brakes by some func
distance to obstacle ahead, speed, and closing deceleration. If the computer did all the braking
the driver become complacent and not pay attention, to the point where a serious accident woul
if the radar failed to detect an obstacle, say, a pedestrian or bicycle, or the computer failed to 
Should braking be some combination of human and computer braking, and if so by what algo
These are human factor questions which are currently being researched.

It is interesting to note that current developmental systems only decelerate and downshift, 
because if the vehicle manufacturers sell vehicles which claim to perform braking they would be
to a new and worrisome area of litigation.

The same radar technology that can warn the driver or help control the vehicle can also be 
to cars overtaking from one side or the other. Another set of questions then arises as to how a
to communicate to the driver and whether or not to trigger some automatic control maneuver in 
cases.

Advanced Traffic Management Systems

Automobile congestion in major cities has become unacceptable, and advanced traffic mana
systems are being built in many of these cities to measure traffic flow at intersections (by
combination of magnetic loop detectors, optical sensors, and other means), and regulate stoplig
message signs. These systems can also issue advisories of accidents ahead by means of variabl
signs or radio, and give advice of alternative routings. In emergencies they can dispatch fire, 
© 1999 by CRC Press LLC
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ambulances, or tow trucks, and in the case of tunnels can shut down entering traffic completely if
necessary. These systems are operated by a combination of computers and humans from cen
control rooms. The operators look at banks of video monitors which let them see the traffic flow at
different locations, and computer-graphic displays of maps, alarm windows, and textual messages. The
operators get advice from computer-based expert systems, which suggest best responses based
measured inputs, and the operator must decide whether to accept the computer’s advice, whether to seek
further information, and how to respond.

High-Speed Train Control

With respect to new electronic technology for information sensing, storage, and processing, rai
technology has lagged behind that of aircraft and highway vehicles, but currently is catching up. The
role of the human operator in future rail systems is being debated, since for some limited right-oway
trains (e.g., in airports) one can argue that fully automatic control systems now perform safely and
efficiently. The train driver’s principal job is speed control (though there are many other monitoring
duties he must perform), and in a train this task is much more difficult than in an automobile becaus
of the huge inertia of the train — it takes 2 to 3 km to stop a high-speed train. Speed limits are fixed
at reduced levels for curves, bridges, grade crossings, and densely populated areas, while wayside signals
temporarily command lower speeds if there is maintenance being performed on the track, if ther
poor environmental conditions such as rock slides or deep snow, or especially if there is another train
ahead. The driver must obey all speed limits and get to the next station on time. Learning to maneuver
the train with its long time constants can take months, given that for the speed control task the driver’s
only input currently is an indication of current speed.

The author’s laboratory has proposed a new computer-based display which helps the driver anticipate
the future effects of current throttle and brake actions. This approach, based on a dynamic model of t
train, gives an instantaneous prediction of future train position and speed based on current accel
so that speed can be plotted on the display assuming the operator holds to current brake-throttle settings.
It also plots trajectories for maximum emergency braking and maximum service braking. In additio
the computer generates a speed trajectory which adheres at all (known) future speed limits, gets to the
next station on time, and minimizes fuel/energy. Figure 6.1.7 shows the laboratory version of this display,
which is currently being evaluated.

Telerobots for Space, Undersea, and Medicine

When nuclear power was first adopted in the late 1940s engineers began the development of master-
slave remote manipulators, by which a human operator at one location could position and orient a device
attached to his hand, and a servomechanism-controlled gripper would move in correspondence and
handle objects at another location. At about the same time, remotely controlled wheeled vehicles,
submarines, and aircraft began to be developed. Such manipulators and vehicles remotely controlled by
humans are called teleoperators. Teleoperator technology got a big boost from the industrial ro
technology, which came in a decade or so later, and provided improved vision, force, and touch sensors
actuators, and control software. Large teleoperators were developed for rugged mining and underse
tasks, and small teleoperators were developed for delicate tasks such as eye surgery. Eventually, teleop-
erators have come to be equipped with sensitive force feedback, so that the human operator not o
can see the objects in the remote environment, but also can feel them in his grasp.

During the time of the Apollo flights to the moon, and stimulated by the desire to control lu
manipulators and vehicles from Earth and the fact that the unavoidable round-trip time delays of 3 se
(speed of light from Earth to moon and back) would not permit simple closed loop control, superviso
controlled teleoperators were developed. The human could communicate a subgoal to be reached a
procedure for getting there, and the teleoperator would be turned loose for some short period to perfo
automatically. Such a teleoperator is called a telerobot.
© 1999 by CRC Press LLC
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Figure 6.1.8 shows a the Flight Telerobotic Servicer (FTS) developed by Martin Marietta for the U.S.
Space Station Freedom. It has two seven-degree of freedom (DOF) arms (including gripper) and o
five-DOF “leg” for stabilizing itself while the arms work. It has two video “eyes” to present a stereoimag
to its human operator. It can be configured either as a master-slave teleoperator (under direct huma
control) or as a telerobot (able to execute small programmed tasks using its own eyes and force sensors)
Unfortunately, the FTS project was canceled by Congress.

FIGURE 6.1.7 Prototype of computer-generated display for high speed trains. (From Askey, 1995.)

FIGURE 6.1.8 Flight Telerobotic Servicer prototype design. (Courtesy of NASA.)
© 1999 by CRC Press LLC
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Figure 6.1.9 shows the remotely operated submersible Jason developed by Woods Hole Oceanographic
Institution. It is the big brother of Jason Junior, which swam into the interior of the ship Titanic and
made a widely viewed video record when the latter was first discovered. It has a single manipulato
arm, sonar and photo sensors, and four thrusters which can be oriented within limited range and
enable it to move in any direction. It is designed for depths up to 6000 m — rather severe pressures! It
too, can be operated either in direct teleoperator mode or as a telerobot.

Common Criteria for Human Interface Design

Design of operator control stations for teleoperators poses the same types of problems as de
controls and displays for aircraft, highway vehicles, and trains. The displays must show the important
variables unambiguously to whatever accuracy is required, but more than that must show the variables
in relation to one another so as to clearly portray the current “situation” (situation awareness is currently
a popular test of the human operator in complex systems). Alarms must get the operator’s attention,
indicate by text, symbol, or location on a graphic display what is abnormal, where in the system
failure occurred, what is the urgency, if response is urgent, and even suggest what action to take. (For
example, the ground-proximity warning in an aircraft gives a loud “Whoop, whoop!” followed by a
distinct spoken command “Pull up, pull up!”) Controls — whether analogic joysticks, master-arms, or
knobs — or symbolic special-purpose buttons or general-purpose keyboards — must be natural and eas
to use, and require little memory of special procedures (computer icons and windows do well here). The
placement of controls and instruments and their mode and direction of operation must correspon
desired direction and magnitude of system response.

Human Workload and Human Error

As noted above, new technology allows combination, integration, and simplification of displays compare
to the intolerable plethora of separate instruments in older aircraft cockpits and plant control room. The
computer has taken over more and more functions from the human operator. Potentially these changes
make the operator’s task easier. However, it also allows for much more information to be presente
more extensive advice to be given, etc.

These advances have elevated the stature of the human operator from providing both physical energy
and control, to providing only continuous control, to finally being a supervisor or a robotic vehicle or

FIGURE 6.1.9 Deep ocean submersible Jason. (Courtesy of Woods Hole Oceanographic Institution.)
© 1999 by CRC Press LLC



6-12 Section 6

ultant, or
 cognitive
mation,
always

tor is
f mental
umably

e with

cales,
ctrum
anges

nal task
imary
ut has

ontrol,
vidence

 when

effort to
 classify

een

nsing,
 noting
alled a
nd D,

C and

ral and
rection
e system
most
n. Pre-
that the
nings
s would
system. Expert systems can now answer the operator’s questions, much as does a human cons
whisper suggestions in his ear even if he doesn’t request them. These changes seem to add many
functions that were not present at an earlier time. They make the operator into a monitor of the auto
who is supposed to step in when required to set things straight. Unfortunately, people are not 
reliable monitors and interveners.

Mental Workload

Under such complexity it is imperative to know whether or not the mental workload of the opera
too great for safety. Human-machine systems engineers have sought to develop measures o
workload, the idea being that as mental load increases, the risk of error increases, but pres
measurable mental load comes before actual lapse into error.

Three approaches have been developed for measuring mental workload:

1. The first and most used is the subjective rating scale, typically a ten-level category scal
descriptors for each category from no load to unbearable load.

2. The second approach is use of physiological indexes which correlate with subjective s
including heart rate and the variability of heart rate, certain changes in the frequency spe
of the voice, electrical resistance of the skin, diameter of the pupil of the eye, and certain ch
in the evoked brain wave response to sudden sound or light stimuli.

3. The third approach is to use what is called a secondary task, an easily measurable additio
which consumes all of the operator’s attention remaining after the requirements of the pr
task are satisfied. This latter technique has been used successfully in the laboratory, b
shortcomings in practice in that operators may refuse to cooperate.

Such techniques are now routinely applied to critical tasks such as aircraft landing, air traffic c
certain planned tasks for astronauts, and emergency procedures in nuclear power plants. The e
suggests that supervisory control relieves mental load when things are going normally, but
automation fails the human operator is subjected rapidly to increased mental load.

Human Error

Human error has long been of interest, but only in recent decades has there been serious 
understand human error in terms of categories, causation, and remedy. There are several ways to
human errors. One is according to whether it is an error of omission (something not done which was
supposed to have been done) or commission (something done which was not supposed to have b
done). Another is slip (a correct intention for some reason not fulfilled) vs. a mistake (an incorrect
intention which was fulfilled). Errors may also be classified according to whether they are in se
perceiving, remembering, deciding, or acting. There are some special categories of error worth
which are associated with following procedures in operation of systems. One, for example, is c
capture error, wherein the operator, being very accustomed to a series of steps, say, A, B, C, a
intends at another time to perform E, B, C, F. But he is “captured” by the familiar sequence B, 
does E, B, C, D.

As to effective therapies for human error, proper design to make operation easy and natu
unambiguous is surely the most important. If possible, the system design should allow for error cor
before the consequences become serious. Active warnings and alarms are necessary when th
can detect incipient failures in time to take such corrective action. Training is probably next 
important after design, but any amount of training cannot compensate for an error-prone desig
venting exposure to error by guards, locks, or an additional “execute” step can help make sure 
most critical actions are not taken without sufficient forethought. Least effective are written war
such as posted decals or warning statements in instruction manuals, although many tort lawyer
like us to believe the opposite.
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Trust, Alienation, and How Far to Go with Automation

Trust

If operators do not trust their sensors and displays, expert advisory system, or automatic control 
they will not use it or will avoid using it if possible. On the other hand, if operators come to plac
much trust in such systems they will let down their guard, become complacent, and, when it fai
be prepared. The question of operator trust in the automation is an important current issue in 
machine interface design. It is desirable that operators trust their systems, but it is also desira
they maintain alertness, situation awareness, and readiness to take over.

Alienation

There is a set of broader social effects that the new human-machine interaction can have, which
discussed under the rubric of alienation.

1. People worry that computers can do some tasks much better than they themselves can,
memory and calculation. Surely, people should not try to compete in this arena.

2. Supervisory control tends to make people remote from the ultimate operations they are su
to be overseeing — remote in space, desynchronized in time, and interacting with a com
instead of the end product or service itself.

3. People lose the perceptual-motor skills which in many cases gave them their identity. They b
"deskilled", and, if ever called upon to use their previous well-honed skills, they could not.

4. Increasingly, people who use computers in supervisory control or in other ways, whether 
tionally or not, are denied access to the knowledge to understand what is going on insi
computer.

5. Partly as a result of factor 4, the computer becomes mysterious, and the untutored user c
attribute to the computer more capability, wisdom, or blame than is appropriate.

6. Because computer-based systems are growing more complex, and people are being “elev
roles of supervising larger and larger aggregates of hardware and software, the stakes n
become higher. Where a human error before might have gone unnoticed and been easily co
now such an error could precipitate a disaster.

7. The last factor in alienation is similar to the first, but all-encompassing, namely, the fear 
“race” of machines is becoming more powerful than the human race.

These seven factors, and the fears they engender, whether justified or not, must be reckone
Computers must be made to be not only “human friendly” but also not alienating with respect to
broader factors. Operators and users must become computer literate at whatever level of sophis
they can deal with.

How Far to Go with Automation 

There is no question but that the trend toward supervisory control is changing the role of the 
operator, posing fewer requirements on continuous sensory-motor skill and more on planning, m
ing, and supervising the computer. As computers take over more and more of the sensory-mot
functions, new questions are being raised regarding how the interface should be designed to pro
best cooperation between human and machine. Among these questions are: To what degree sh
system be automated? How much “help” from the computer is desirable? What are the po
diminishing returns?

Table 6.1.1 lists ten levels of automation, from 0 to 100% computer control. Obviously, there a
tasks which have achieved 100% computer control, but new technology pushes relentlessly 
direction. It is instructive to consider the various intermediate levels of Table 6.1.1 in terms not o
how capable and reliable is the technology but what is desirable in terms of safety and satisfac
the human operators and the general public.
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TABLE 6.1.1 Scale of Degrees of Automation

1. The computer offers no assistance; the human must do it all.
2. The computer offers a complete set of action alternatives, and
3. Narrows the selection down to a few, or
4. Suggests one alternative, and
5. Executes that suggestion if the human approves, or
6. Allows the human a restricted time to veto before automatic execution, or
7. Executes automatically, then necessarily informs the human, or
8. Informs the human only if asked, or
9. Informs the human only if it, the computer, decides to

10. The computer decides everything and acts autonomously, ignoring the human. 
The current controversy about how much to automate large commercial transport 
aircraft is often couched in these terms

Source:Sheridan 1987. With permission.
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6.2 The Need for Control of Mechanical Systems

Peter S. Curtiss

Process control typically involves some mechanical system that needs to be operated in such a fashion
that the output of the system remains within its design operating range. The objective of a process control
loop is to maintain the process at the set point under the following dynamic conditions:

• The set point is changed;

• The load on the process is changed;

• The transfer function of the process is changed or a disturbance is introduced.

The Classical Control System Representation

Feedback-Loop System. A feedback (or closed-loop) system contains a process, a sensor and a c
troller. Figure 6.2.1 below shows some of the components and terms used when discussing feed
loop systems.

Process. A process is a system that produces a motion, a temperature change, a flow, a pressure, or
many other actions as a function of the actuator position and external inputs. The output of the process
is called the process value. If a positive action in the actuator causes an increase in the process value
then the process is called direct acting. If positive action in the actuator decreases the process value, it
is called reverse acting.

Sensor. A sensor is a pneumatic, fluidic, or electronic or other device that produces some kind of signa
indicative of the process value.

Set Point. The set point is the desired value for a process output. The difference between the set poin
and the process value is called the process error.

Controller. A controller sends signals to an actuator to effect changes in a process. The controller
compares the set point and the process value to determine the process error. It then uses this error to
adjust the output and bring the process back to the set point. The controller gain dictates the amount
that the controller adjusts its output for a given error.

Actuator. An actuator is a pneumatic, fluidic, electric, or other device that performs any physical action
that will control a process.

External Disturbances. An external disturbance is any effect that is unmeasured or unaccounted f
by the controller.

Time Constants. The time constant of a sensor or process is a quantity that describes the dyna
response of the device or system. Often the time constant is related to the mass of an object or
dynamic effect in the process. For example, a temperature sensor may have a protective sheath around

FIGURE 6.2.1 Typical feedback control schematic diagram.
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it that must first be warmed before the sensor registers a change of temperature. Time constant can range
from seconds to hours.

Dead Time. The dead time or lag time of a process is the time between the change of a process
the time this change arrives at the sensor. The delay time is not related to the time constant of the senr,
although the effects of the two are similar. Large dead times must be properly treated by the con
system to prevent unstable control.

Hysteresis. Hysteresis is a characteristic response of positioning actuators that results in different
positions depending on whether the control signal is increasing or decreasing.

Dead Band. The dead band of a process is that range of the process value in which no control action
is taken. A dead band is usually used in two-position control to prevent “chattering” or in split-range
systems to prevent sequential control loops from fighting each other.

Control Point. The control point is the actual, measured value of a process (i.e., the set point + stead
state offset + compensation).

Direct/Reverse Action. A direct-acting process will increase in value as the signal from the controlle
increases. A reverse-acting process will decrease in value as the signal from the controller increases

Stability. The stability of a feedback control loop is an indication of how well the process is controlled
or, alternatively, how controllable the process is. The stability is determined by any number of criteria,
including overshoot, settling time, correction of deviations due to external disturbances, etc.

Electric Control. Electric control is a method of using low voltages (typically, 24 VAC) or line voltages
(110 VAC) to measure values and effect changes in controlled variables.

Electronic Control. Electronic controls use solid-state, electronic components used for measurem
and amplification of measured signals and the generation of proportional control signals.

Pneumatic Control. Pneumatic controls use compressed air as the medium for measuring and contro
processes.

Open-Loop Systems. An open-loop system is one in which there is no feedback. A whole-house attic
fan in an example. It will continue to run even though the house may have already cooled off. Also,
timed on/off devices are open loops.

Examples

Direct-Acting Feedback Control. A classic control example is a reservoir in which the fluid must be
maintained at a constant level. Figure 6.2.2 shows this process schematically. The key features of this
direct-acting system are labeled. We will refer to the control action of this system shortly after defining
some terms.

Cascaded (Master-Slave) Control Loops. If a process consists of several subprocesses, each with 
relatively different transfer function, it is often useful to use cascaded control loops. For example, consider
a building housing a manufacturing line in which 100% outside air is used but which must also have
very strict control of room air temperature. The room temperature is controlled by changing the posit
of a valve on a coil at the main air-handling unit that supplies the zone. Typically, the time constant of
the coil will be much smaller than the time constant of the room. A single feedback loop would probably
result in poor control since there is so much dead time involved with both processes. The solution is to
use two controllers: the first (the master) compares the room temperature with the thermostat 
and sends a signal to the second (the slave) that uses that signal as its own set point for controlling the
coil valve. The slave controller measures the output of the coil, not the temperature of the room. The
controller gain on the master can be set lower than that of the slave to prevent excessive cycling.
© 1999 by CRC Press LLC
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Sequential Control Loops. Sometimes control action is needed at more than one point in a pro
An example of this is an air-handling unit that contains both heating and cooling coils in order to main
a fixed outlet air temperature no matter the season. Typically, a sequential (or split-range) system in an
air-handling unit will have three temperature ranges of operation, the first for heating mode, the last for
cooling mode, and a middle dead-band region where neither the cooling nor heating coils are operati
Most sequential loops are simply two different control loops acting from the same sensor. The term
sequential refers to the fact that in most of these systems the components are in series in the air orwater
stream.

Combined Feed-Forward/Feedback Loops. As pointed out earlier, feed-forward loops can be used
when the effects of an external disturbance on a system are known. An example of this is outside air
temperature reset control used to modify supply air temperatures. The control loop contains both a
discharge air temperature sensor (the primary sensor) and an outdoor air temperature sensor (
compensation sensor). The designer should have some idea about the influence of the outside tempera
on the heating load, and can then assign an authority to the effect of the outside air temperature on th
controller set point. As the outdoor temperature increases, the control point decreases, and viceversa,
as shown in Figure 6.2.3.

Predictive Control. Predictive control uses a model of the process to predict what the process value
will be at some point in the future based upon the current and past conditions. The controller then
specifies a control action to be taken at the present that will reduce the future process error.

Adaptive Control. Adaptive controllers modify their gains dynamically so to adapt to current proce
conditions.

Supervisory Controllers. Supervisory controllers are used to govern the operation of an entire plan
and/or control system. These may be referred to as distributed control systems (DCSs) which can be

FIGURE 6.2.2 Example of a controlled process.

FIGURE 6.2.3 Example of the effect of compensation control.
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used to govern the control of individual feedback loops and can also be used to ensure some kin
optimal performance of the entire plant. The controller will vary setpoints and operating modes in a
attempt to minimize a cost function. A basic diagram of a supervisory controller in Figure 6.2.4.

FIGURE 6.2.4 Typical supervisory controller.
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6.3 Control System Analysis

Peter S. Curtiss

The Linear Process Approximation

To design controllers it is necessary to have both a dynamic process and control system representa
This section describes the key points of the most common such representation, that of linear proce
and their controls. A process is basically a collection of mechanical equipment in which an inp
changed or transformed somehow to produce an output. Many processes will be at near-steady-state,
while others may be in a more or less constant state of change. We use building control systems as an
illustration.

Steady-State Operation

The true response of a seemingly simple process can be, in fact, quite complex. It is very difficult to
identify and quantify every single input because of the stochastic nature of life. However, practically
any process can be approximated by an equation that takes into account the known input variables and
produces a reasonable likeness to the actual process output.

It is convenient to use differential equations to describe the behavior of processes. For this reason,
we will denote the “complexity” of the function by the number of terms in the corresponding differential
equation (i.e., the order or degree of the differential equation). In a linear system analysis, we usua
consider a step change in the control signal and observe the response. The following descriptions will
assume a step input to the function, as shown in Figure 6.3.1. Note that a step change such as this
usually unlikely in most fields of control outside of electronic systems and even then can only be applied
to a digital event, such as a power supply being switched on or a relay being energized. Zero-order
system output has a one-to-one correspondence to the input,

First-order functions will produce a time-varying output with a step change as input,

and higher-order functions will produce more complex outputs.
The function that relates the process value to the controller input is called the transfer function of the

process. The time between the application of the step change, t0, and the time at which the full extent
of the change in the process value has been achieved is called the transfer period. A related phenomenon
is process dead time. If there is a sufficient physical distance between the process output and the se
assigned to measuring it, then one observes dead time during which the process output is not affected
by the control signal (see Figure 6.3.2). The process gain (or static gain) is the ratio of the percentage

FIGURE 6.3.1 Step change in control signal.

y t  a u t( ) = ⋅ ( )0
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change of the process output to the corresponding percentage change of the control signal foriven
response. For example, the gain can be positive (as in a heating coil) or negative (as in a cooling coil).

Dynamic Response

In practice, there are very few processes controlled in a stepwise fashion. Usually, the control signal is
constantly modulating much the way that one makes small changes to the steering wheel of a car wh
driving down the highway. We now consider the dynamic process of level control in buckets filled with
water (see Figure 6.3.3). Imagine that the level of water in the bucket on the left of Figure 6.3.3 is the
control signal and the level of water in the bucket on the right is the process value. It is obvious that a
step change in the control signal will bring about a first-order response of the process value.

Suppose, however, that a periodic signal is applied to the level of the bucket on the left. If the frequency
of the signal is small enough, we see a response in the level in the bucket on the right that varies as a
function of this driving force, but with a delay and a decrease in the amplitude.

Here the dynamic process gain is less than one even though the static process gain is one. There is
no dead time in this process; as soon as we begin to increase the control signal the process value will
also begin to increase. The dynamic process gain, therefore, can be defined similarly to that of the sta
gain — it is the ratio of the amplitude of the two signals, comparable with the normalized ranges us
in the static gain definition.

The dynamic gain, as its name suggests, is truly dynamic. It will change not only according to
transfer function, but also to the frequency of the control signal. As the frequency increases, the output
will lag even farther behind the input and the gain will continue to decrease. At one point, the frequency
may be exactly right to cancel any past effects of the input signal (i.e., the phase shift is 180°) and the
dynamic gain will approach zero. If the frequency rises further, the process output may decrease as 
control signal increases (this can easily be the case with a building cooling or heating coil due to the
mass effects) and the dynamic gain will be negative!

At this point it is convenient to define a feedback loop mathematically. A general feedback loop is
shown in Figure 6.3.4. The controller, actuator, and process have all been combined into the forward
transfer function (or open-loop transfer function) G and the sensor and dead time have all been combined
into the feedback path transfer function H. The overall closed-loop transfer function is defined as

FIGURE 6.3.2 Effective dead time of a process subjected to a step change in controlled signal.

FIGURE 6.3.3 Connected water containers used for example of dynamic response.
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The right-hand side of this equation is usually a ratio of two polynomials when using Laplacez-
transforms. The roots of the numerator are called the zeros of the transfer function and the roots of th
denominator are called the poles (Shinners, 1978).

The denominator of the closed loop transfer function, 1 + G · H, is called the characteristic function.
If we set the characteristic function equal to zero we have the characteristic equation

1 + G · H = 0

The characteristic equation can be used to assess process control stability during system desig

Representation of Processes in t, s, and z Domains

We cannot hope to ever know how a process truly behaves. The world is an inherently stochast
and any model of a system is going to approximate at best. Nonetheless, we will need to choos
kind of representation in order to perform any useful analysis.

This section will consider three different domains: the continuous-time domain, the frequency do
and the discrete-time domain. The frequency domain is useful for certain aspects of controller d
whereas the discrete-time domain is used in digital controllers.

Continuous-Time-Domain Representation of a Process

In the time domain we represent a process by a differential equation, such as

This is just a generalization of the first-order system equation described earlier.

Frequency-Domain Representation of a Process — Laplace Transforms

The solution of higher-order system models, closed-form solution is difficult in the time domain
this reason, process transfer functions are often written using Laplace transforms. A Laplace tra
is a mapping of a continuous-time function to the frequency domain and is defined as

Laplace transforms are treated in Section 19. This formulation allows us to greatly simplify pro
involving ordinary differential equations that describe the behavior of systems. A transformed differ
equation becomes purely algebraic and can be easily manipulated and solved. These solutions
of great interest in themselves in modern control system design but the transformed system (+) co
differential equation is very useful in assessing control stability. This is the single key aspect of L
transforms that is of most interest. Of course, it is possible just to solve the governing differential eq
for the system directly and explore stability in that fashion.

FIGURE 6.3.4 Generalized feedback loop.
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The Laplace transform of the previous differential equation is

This equation can be rewritten as

so that the transfer function is found from

This is the expression that is used for stability studies.

Discrete-Time-Domain Representation of a Process. A process in the discrete time domain is describ
(Radke and Isermann, 1989) by

This representation is of use when one is designing and analyzing the performance of direct
control (DDC) systems. Note that the vectors a and b are not the same as for the continuous-time doma
equation. The z-transform uses the backward shift operator and therefore the z-transform of the discrete-
time equation is given by

The transfer function can now be found:

z-Transform Details. Because z-transforms are important in modern control design and are not tre
elsewhere in this handbook, some basics of their use are given below. More and more control applications
are being turned over to computers and DDC systems. In such systems, the sampling is not contin
as required for a Laplace transform. The control loop schematic is shown in Figure 6.3.5.

It would be prohibitively expensive to include a voltmeter or ohmmeter on each loop; therefore, t
controller employs what is called a zero-order hold. This basically means that the value read by the
controller is “latched” until the next value is read in. This discrete view of the world precludes the use
of Laplace transforms for analyses and makes it necessary, therefore, to find some other means o

FIGURE 6.3.5 Sampled feedback loop.
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simplifying the simulation of processes and controllers. The following indicates briefly how z-transforms
of controlled processes can be derived and how they are used in a controls application. In the desi
section of this chapter we will use the z-transform to assess controller stability.

Recall that the Laplace transform is given as

Now suppose we have a process that is sampled at a discrete, constant time interval T. The index k will
be used to count the intervals,

at time t = 0, k = 0,

at time t = T, k = 1,

at time t = 2T, k = 2,

at time t = 3T, k = 3,

and so forth. The equivalent Laplace transform of a process that is sampled at a constant interval T can
be represented as

By substituting the backward-shift operator z for eTs, we get the definition of the z-transform:

Example of Using z-Transfer Functions. Suppose we have a cylindrical copper temperature sensor i
a fluid stream with material properties as given. We wish to establish its dynamic characteristics for t
purpose of including it in a controlled process model using both Laplace and z-transforms. Figure 6.3.6
shows the key characteristics of the sensor. The sensor measures 0.5 cm in diameter and is 2 cm lo
For the purposes of this example we will assume that the probe is solid copper. The surface area of the
sensor is then

and the mass is

The thermal capacitance of the sensor is found from the product of the mass and the heat capay,

and the total surface heat transfer rate is the product of the area and the surface heat transfer coefficient,
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Now we can perform an energy balance on the sensor by setting the sum of the energy flow i
sensor and the energy stored in the sensor equal to zero:

where Ts is the temperature of the sensor and Ta is the ambient fluid temperature. This relationship is
nonhomogeneous first-order differential equation:

The time constant of the sensor is defined as

The differential equation that describes this sensor is

This example will find the response of the sensor when the fluid temperature rises linearly by 30°C from
time t = 0 to time t = 200 seconds and then remains constant. That is, the driving function is

Assuming an initial condition of Ts = 0 at t = 0, we find that

and

FIGURE 6.3.6 Fluid temperature sensor used in example.
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A graph of the entire process (rise time and steady state) is shown in Figure 6.3.7. The two lines intersect
at t = 200 seconds.

Solution of example in frequency domain
This same process can be solved using Laplace transforms. First we will solve this problem for the first
200 sec. The Laplace transform of a ramp function can be found from the tables (see Section 19)

This can be expanded by partial fractions to get

Using the table for the inverse Laplace transforms gives

Substituting τ = 80,

FIGURE 6.3.7 Time domain solution of example.
First line: T = 0.15t – 12 + 12e–0.0125t. Second line: T = 30 – 134.2e–t/r. 
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This is exactly the same as the time-domain solution above. For the steady-state driving force of Ta =
30 for t > 200 sec we also find the same result.

Solution of example in the discrete-time domain
We consider the same problem in the discrete-time domain that a DDC system might use. Rec
the transfer function in the frequency domain was given by

We look to the table in this book’s appendix and find that the discrete-time equivalent is

where T is the sampling frequency in seconds. The driving function Ta is a given as

where α is the rate of change of the temperature as above (0.15°C/sec). Note that to put this into the
discrete-time domain we must correct this rate by the sampling interval,

using α = (0.15 · T) ºC/sampling interval.
We can now express the response of the process as

since the z operator acts on the sensed temperature by performing a backward shift of the time index.
In other words, the previous equation can be rewritten as

So the current temperature is determined by the previous three temperature measurements,

Regarding the last term in the equation, recall that the inverse transform of z–k is given as 1 when t = k,
and zero otherwise. This term provides the initial “jump-start” of the progression. Table 6.3.1 shows the
first few time steps for the z-domain solution using time steps of 0.1 and 1.0 seconds. In genera
accuracy of the z-domain solution increases as the time step grows smaller. The solution for kT > 200
seconds is similar to that for the Laplace transforms.
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The next three figures show the effect of using different time intervals in the z-domain solution. The
values shown here are for the example outlined in this section. If one could use an infinitesimally small
time step, the z-domain solution would match the exact solution. Of course, this would imply a much
larger computational effort to simulate even a small portion of the process. In practice, a time interval
will be chosen that reflects a compromise between accuracy and speed of calculation.

Each graph shows two lines, one for the exact solution of the first 200 sec of the example and the
other for the z-domain solution. Figures 6.3.8 to 6.3.10 give the z-domain solution using time intervals
of 0.1, 1.0 and 10.0 seconds, respectively. Notice that there is not much difference between the first two
graphs even though there is an order of magnitude difference between the time intervals used. The latter
two graphs show significant differences.

TABLE 6.3.1 Initia l Time Steps for z-Domain Solution of Example

Initial 10 Steps for T = 0.1 sec Initial 10 Steps for T = 1.0 sec

k Time Ts,exact Ts,z transform k Time Ts,exact Ts,z transform

0 0.00 0.00000 0.00000 0 0.00 0.0000 0.0000
1 0.10 0.00001 0.00002 1 1.00 0.0009 0.0019
2 0.20 0.00004 0.00006 2 2.00 0.0037 0.0056
3 0.30 0.00008 0.00011 3 3.00 0.0083 0.0112
4 0.40 0.00015 0.00019 4 4.00 0.0148 0.0185
5 0.50 0.00023 0.00028 5 5.00 0.0230 0.0277
6 0.60 0.00034 0.00039 6 6.00 0.0329 0.0386
7 0.70 0.00046 0.00052 7 7.00 0.0446 0.0512
8 0.80 0.00060 0.00067 8 8.00 0.0580 0.0656
9 0.90 0.00076 0.00084 9 9.00 0.0732 0.0816

10 1.00 0.00093 0.00103 10 10.00 0.0900 0.0994

FIGURE 6.3.8 Result of z-transform when T = 0.1 sec.
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FIGURE 6.3.9 Results of z-transform when T = 1.0 sec.

FIGURE 6.3.10 Results of z-transform when T = 10.0 sec.
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6.4 Control System Design and Application

Peter S. Curtiss

Controllers

Controllers are akin to processes in that they have gains and transfer functions. Generally, there is no
dead time in a controller or it is so small as to be negligible.

Steady-State Effects of Controller Gain

Recall that the process static gain can be viewed as the total change in the process value due to a 100%
change in the controller output. A proportional controller acts like a multiplier between an error signal
and this process gain. Under stable conditions, therefore, there must be some kind of error to yieldny
controller output. This is called the steady-state or static offset.

Dynamic Effects of Controller Gain

Ideally, a controller gain value is chosen that compensates for the dynamic gain of the process under
normal operating conditions. The total loop dynamic gain can be considered as the product of the proce
feedback, and controller gains. If the total dynamic loop gain is one, the process will oscillate continu
ously at the natural frequency of the loop with no change in amplitude of the process value. If the loop
gain is greater than one, the amplitude will increase with each cycle until the limits of the controller or
process are reached or until something fails. If the dynamic loop gain is less than one, the process w
eventually settle down to stable control.

Controller Bias

The controller bias is a constant offset applied to the controller output. It is the output of the contro
if the error is zero,

where M is the bias. This is useful for processes that become nonlinear at the extremes or for process
in which the normal operating conditions are at a nonzero controller output.

PID Controllers

Many mechanical systems are controlled by proportional-integral-derivative (PID) controllers. There are
many permutations of such controllers which use only certain portions of the PID controllers o
variations of this kind of controller. In this section we consider this very common type of controller.

Proportional Control

Proportional control results in action that is linear with the error (recall the error definition in Figure
6.2.1) The proportional term, Kp · e, has the greatest effect when the process value is far from the desired
setpoint. However, very large values of Kp will tend to force the system into oscillatory response. The
proportional gain effect of the controller goes to zero as the process approaches set point. P
proportional control should therefore only be used when

• The time constant of the process is small and hence a large controller gain can be used;

• The process load changes are relatively small so that the steady-state offset is limited;

• The steady-state offset is within an acceptable range.

Integral Control

Integral control makes a process adjustment based on the cumulative error, not its current value. The
integral term Ki is the reciprocal of the reset time, Tr , of the system. The reset time is the duration o

u K e M= ⋅ +
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each error-summing cycle. Integral control can cancel any steady-state offsets that would occu
using purely proportional control. This is sometimes called reset control.

Derivative Control

Derivative control makes a process adjustment based on the current rate of change of the proces
error. Derivative control is typically used in cases where there is a large time lag between the con
device and the sensor used for the feedback. This term has the overall effect of preventing the 
signal from going too far in one direction or another, and can be used to limit excessive oversho

PID Controller in Time Domain

The PID controller can be represented in a variety of ways. In the time domain, the output 
controller is given by

PID Controller in the s Domain

It is relatively straightforward to derive the Laplace transform of the time-domain PID equation
transfer function of the controller is

This controller transfer function can be multiplied by the process transfer function to yield the o
forward transfer function G of an s-domain process model. The criteria described earlier can then
used to assess overall system stability.

PID Controller in the z Domain

Process data are measured discretely at time intervals ∆t, and the associated PID controller can b
represented by

The change of the output from one time step to the next is given by u(k) – u(k – 1), so the PID difference
equation is

and can be simplified as

where
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Note that we can write this as

The z-domain transfer function of the PID controller is then given as

Controller Performance Criteria and Stability

Performance Indexes

Obviously, in feedback loops we wish to reduce the process error quickly and stably. The control systems
engineer can use different cost functions in the design of a given controller depending on the criteria
for the controlled process. Some of these cost functions (or performance indexes) are listed here:

These indexes are readily calculated with DDC systems and can be used to compare the effects of
different controller settings, gains, and even control methods.

Stability

Stability in a feedback loop means that the feedback loop will tend to converge on a value as opposed
to exhibiting steady-state oscillations or divergence. Recall that the closed-loop transfer function is given
by

and that the denominator, 1 + GH, when equated to zero, is called the characteristic equation. Typically,
this equation will be a polynomial in s or z depending on the method of analysis of the feedback lo
Two necessary conditions for stability are that all powers of s must be present in the characterist
equation from zero to the highest order and that all coefficients in the characteristic equation must have
the same sign. Note that the process may still be unstable even when these conditions are satisfied.

Roots of the Characteristic Equation. The roots of the characteristic equation play an important role
determining the stability of a process. These roots can be real and/or imaginary and can be plotte
shown in Figure 6.4.1. In the s-domain, if all the roots are in the left half-plane (i.e., to the left of t
imaginary axis), then the feedback loop is guaranteed to be asymptotically stable and will converge to
a single output value. If one or more roots are in the right half-plane, then the process is unstab
one or more roots lie on the imaginary axis and none are in the right half-plane, then the pro
considered to be marginally stable. In the z-domain, if all the roots lie within the unit circle about th
origin then the feedback loop is asymptotically stable and will converge. If one or more roots lie outside

ISE Integral of the square of the error

ITSE Integral of the time and the square of the error

ISTAE Integral of the square of the time and the absolute error

ISTSE Integral of the square of the time and the square of the error
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the unit circle then the process is unstable. If one or more roots lie on the unit circle and none are
the unit circle, then the process is marginally stable.

Root locus example
Consider the feedback loop shown in Figure 6.4.2. The characteristic equation is given by 1 + GH = 0 or

For different values of K we can plot the roots of this equation. The graph in Figure 6.4.3 shows an
example plot when the characteristic equation is given by s2 + (1.25 + K)s + 1.25 = 0. The plot shows
that a system described by this characteristic demonstrates stable response for a process gain of 0.0 ≤
K ≤ 10.0. For gains greater than 10, there exists at least one root in the right half-plane and the proc
is not under stable control.

Note that the root locus plot is always symmetric about the real axis and that the number of sepa
segments of the locus is equal to the number of roots of the characteristic equation (i.e., the num
poles of the closed-loop transfer function).

Routh-Hurwitz Stability Criteria. The Routh-Hurwitz method is an tabular manipulation of the charac-
teristic equation in the frequency domain and is used to assess stability. If the characteristic equation is
given by

then the Routh-Hurwitz method constructs a table from the coefficients as follows:

FIGURE 6.4.1 Placement of roots in the imaginary plane (showing unit circle).

FIGURE 6.4.2 Simple feedback control loop.
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and so forth. The number of roots in the right-hand plane of the s-domain is equal to the number of sig
changes in the first column, i.e., the column containing a0, a1, X1, Y1, etc. In other words, if all the
elements in the first column have the same sign, then there are no roots in the right-hand plane
process is stably controlled. Also, for special cases of the characteristic equation,

• If the first element of any row is zero but the remaining elements are not, then use some
value ε and interpret the final results as ε → 0.

• If one of the rows before the final row is entirely zeros, then (1) there is at least one pair o
roots of equal magnitude but opposite signs, or (2) there is at least one pair of imaginary
that lie on the imaginary axis, or (3) there are complex roots symmetric about the origin.

Field Commissioning — Installation, Calibration, Maintenance

Tuning of Feedback Loops

The tuning of a controller involves finding controller gains that will ensure at least a critically dam
response of the process to a change in set point or process disturbance. A good starting point
constants is that derived during the design phase by the stability assessment approaches describ
However, real processes do not necessarily behave as their models would suggest and actual fie
of controls is needed during the system-commissioning process.
Pole-Zero Cancellation. One method of obtaining the desired critically damped response of a pro
is to determine the closed-loop transfer function in the form

FIGURE 6.4.3 Root locus of s2 + (1.25 + K)s + 1.25 = 0.
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The coefficients A and B will depend on both the process characteristics and the controller gains. The
objective of pole-zero cancellation is to find values for the controller gains that will set some numerato
coefficients equal to those in the denominator, effectively canceling terms. As can be imagined, however,
this can be a very difficult exercise, particularly when working with complex roots of the equations.
This method can only be used with very simple system models.

Reaction Curve Techniques. Often it is advisable to test a feedback loop in situ. Several techniques have
been developed that allow for the derivation of “good” PID constants for a given open-loop response
Consider the process response shown in Figure 6.4.4 where ∆c is the change of process output, ∆u is the
change of controller, L is the time between change and intersection, and T is the time between lower
intersection and upper intersection. We can define the following variables: A = ∆u/∆c, B = T/L, and R =
L/T. These values can be used with the equations given in Table 6.4.1 to estimate “decent” control
constants. The users of these constants should be aware, however, that these constants are based on t
typical response of second-order systems and may not provide good values for all processes.

Ultimate Frequency. The ultimate frequency test involves increasing the proportional gain of a process
until it begins steady-state oscillations.  is defined as the proportional gain that results in steady
oscillations of the controlled system and T* is the period of the oscillations. The desired controller gains
are given in Table 6.4.2. Note that the use of the ultimate period test is not always easy to do in practice
and may be prohibited in certain cases by the a process operations manager.

FIGURE 6.4.4 Reaction curve components.
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TABLE 6.4.1 Equations for Finding PID Constants Using the Zeigler-Nichols and Cohen 
and Coon Reaction Curve Tests

Zeigler-Nichols Cohen and Coon

Controller 
Components Kp Kp

P AB — — — —

P + I 0.9AB 3.3L — —

P + D — — — —

P + I + D 1.2AB 2L 0.5L

TABLE 6.4.2 Equations for Estimating PID constants Using 
the Ultimate Frequency Test

Controller 
Components

Kp

P — —

P + I 0.8T* —

P + I + D 0.5T* 0.125T*
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6.5 Advanced Control Topics

Peter S. Curtiss, Jan Kreider, Ronald M. Nelson, and Shou-Heng Huang

Neural Network-Based Predictive/Adaptive Controllers

Neural networks are powerful modeling tools used for predicting nonlinear behavior of processes and
require a minimum of knowledge about the physical system involved. This approach can be used t
predict the behavior of a process and can calculate the future value of the process variables. The effects
of current modifications to the future value of the controlled process can be easily quantified and used
to obtain the desired process response.

Overview of Neural Networks

The artificial neural network attempts to mimic a few aspects of the behavior of biological neural
networks. Inputs to a biological nerve cell are carried along the dendrites of that cell. These inputs come
from the positive impulse signals of other cells but may be converted to negative signals by the chemical
interactions at the synapse between the cells. All of the inputs are then carried to the soma where they
add or subtract from the overall potential difference between the interior of the soma and the surround
fluid. Once the cell potential rises above a certain level, the cell “fires” and sends signals to other ce
along its axon.

The artificial cell behaves in much the same way, except that the output signal is analog instead 
digital. Signals from sending cells are passed along to a receiving cell through a series of connections
Each connection has an associated weighting factor that acts as a multiplier on the signal from t
sending cell. All the inputs to a cell are summed (along with a cell bias, if included) and the resu
value is used to generate the output of the receiving cell. The output of the cell is referred to as the ce
activation and the function that uses the net input to generate the cell activation is called the activation
function. The activation function can theoretically be of any form, although linear and sigmoidal function
are frequently used. Figure 6.5.1 shows a comparison between a biological cell and an artificial cell.

When many different cells are combined together into a richly connected network (Figure 6.5.2), the
result can behave mathematically like a nonlinear regression engine capable of mapping inputs to outp
for complex relationships. The trick is to find a series of weights W that allow the network to provide
the desired outputs using specific inputs.

Training Neural Networks

The net input to a cell is given by

FIGURE 6.5.1 Biological cell vs. artificial cell.
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where INET,i is the net input of node i due to input from nodes f through I (as in first through last), Aj is
the output of cell j, and wj→i is the weighting factor associated with the connection between the sen
node j and the receiving node i. The output (activation) of cell i is then going to be a function of the
net input to the cell. Typically, the sigmoid function is used to relate activation to cell inputs

Practically any function can be used as the activation function of each node; the sigmoid func
usually chosen because the derivative, used during the training process, is easy to calculate. Tra
training of neural networks seeks to minimize the error function

where NP is the number of input/output pairs of data, No is the number of outputs of the network, an
tp,i is the desired (target) output value for a given set of inputs. This error function is minimized 
adjusting the values of the weights proportionally to the negative of the derivative of the error
respect to each weight,

where ε is the learning rate of the network. In a multilayered network the training is initiated 
stimulating the network with a specific vector of inputs. The outputs of all the cells are then calc

FIGURE 6.5.2 Artificial neural network consisting of several layers of mathematical models of biological neu
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in order, starting with the input layer and ending with the output layer. The output is then com
with the known target output value, and any errors are compensated for by adjusting the weigh
the output layer back toward the input layer. This method of training is, therefore. called back-propa-
gation. With such a method, the previous equation for ∆w can be rewritten as

where δi represents the effect of a change in the net input to cell j on the output of cell i. For cells in
the output layer,

where f ′ is the derivative of the sigmoid activation function. For nodes in the hidden layers,

The product diAj is something called the weight-error derivative (WED). To prevent excessive oscillation
of the weights during training, the change of weights can be restricted according to

where µ is the momentum of the network. Finally, to gradually reduce the rate at which the weig
change, the learning rate ε can be made subject to exponential decay during the training process.
is sometimes called simulated annealing.

Bias nodes are like stand-alone cells that connect to each “normal” cell of the network. The o
activation of each bias node is always unity and the “weight” connecting the bias node to the n
cell acts as a threshold function that suppresses or augments the output of the cell.

Using Networks for Controlling Feedback Loop Processes

Neural networks offer the potential for and have demonstrated improved control of processes t
predictive techniques. The concept is fairly simple: train a network to predict the dynamic behav
a process and then use these predictions to modify the controller output to place the process at a
set point R(t) at some time in the future. Initial results from computer simulations of such a contr
are presented in Curtiss et al. (1993 a,b,c). Anderson (1989) described a computer simulation in
a network was trained to recognize the dynamic properties of an inverted pendulum (e.g., a 
balanced on an open palm). A control system was developed in which the angle and position
pendulum were used to move the supporting base in order to maintain the pendulum upright. A
network-based predictive controller is outlined in the classic discussion by Nguyen and Widrow (
on the “truck backer-upper” problem in which a tractor-trailer is backed into position at a loading 

Properly tuned fixed-gain controllers will usually work over a relatively wide range of pro
operation provided that the external perturbations and influences are small or time invariant
nonlinear processes, however, a conventional control algorithm can lead to unstable control if th
were chosen for a range different from the current operating conditions.

Architecture of the Network

With the neural network approach it is possible to overcome these problems by using as many ad
salient inputs (the auxiliary inputs) as necessary and by incorporating an inherently nonlinear mod
accomplish the control objectives. The network is trained using examples of the time-dependen
tionship between a value of the feedback and previous values of the feedback, the controller out

∆w Aj i i j→ = −εδ

δ i i i it A f I= −( ) ′( )NET,
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j f

f I w= ′( ) ( )→
=
∑NET,

1

∆ ∆w k w k( ) = ⋅ + ⋅ −( )ε µWED 1
© 1999 by CRC Press LLC



Mechanical System Controls 6-39

re-

al.
e

s a

d

 of

ome

ould
the auxiliary inputs. An example of the network architecture required for this is shown in Figure 6.5.3.
In practice there does not need to be a limit on the number of previous measurements of any of the
inputs, although the final size of the network and the corresponding training time and memory requi
ments need to be taken into consideration.

The network, once trained, can predict the future feedback value for any controller output. The trick
is to find the controller output that causes the future process value to match the set point. This is
accomplished by finding the derivative of the future error with respect to the current controller sign
Starting with the current process conditions, the feedback value is predicted at each time step into th
future over a preset time window (). During each step of the prediction the values for the controller
output and auxiliary inputs are held constant. This simulation is performed twice: the first time with a
small increase in the controller output and the second time with a small decrease. This allows for the
calculation of the change of the future process value (and hence the change of the future error) a
function of the change in the current controller output. The controller output is then modified by

where Ef is the future error and Gnet is the network controller gain. For a multiple-output controller, the
additional outputs are simply added as more outputs of the network and the future predictions repeate
several times to find the correct partial derivatives.

Many different variations on this theme are possible, for example, using the sum of the absolute values
of all the errors over the prediction window (or the sum of the square of the errors, etc.) instead
simply the future error. Computer-simulated results of such tests are provided by Curtiss et al. (1993).

Estimating the Size of the Prediction Time Window. It is possible to use the network model to determine
the size of the time window by estimating the amount of time required for the process to reach s
future steady state after a simulated change in the controller output. An example of such an open-loop
response it is shown in Figure 6.5.5. Here the network is simulating the response of a reverse-acting
process after a decrease in actuator position at time step 0. About 70% (ln 2) of total rise time is achieved
after 15 time steps. This kind of calculation can be performed during the control sequence and sh
indicate the proper time window size.

FIGURE 6.5.3 Network used for process prediction.

∆U t  G  E t
E t

U tf
f( ) = −  ⋅  ( )
( )
( )net

∂
∂

© 1999 by CRC Press LLC



6-40 Section 6

k-
e the

 a

nt
Example of PID vs. Network Controller

Figure 6.5.6 shows an example of a process under PID control that demonstrates nonlinearity at different
ranges of actuator position. Figure 6.5.7 shows the same process under the influence of a predictive
neural network controller that had been trained on the process. Note that the network-based controller
does not show the same problems of unstable control in certain actuator ranges. The size of the time
window (15 time steps) was determined using the method discussed in the previous section. .

Using Networks as Supervisory Controllers

The previous section discussed the use of neural networks to minimize a predicted error of a feedbac
loop process. It is possible to apply a similar methodology for supervisory plant control to optimiz
process according to some cost function. A network is first trained to predict the cost function under
wide range of operating conditions. This network is then used to predict what will happen with different
control strategies Figure 6.5.8. shows a schematic of this technique. The left side of the figure shows
the training mode, where the network is attempting to associate the various plant inputs with the cost
function output. There can be multiple inputs, including uncontrollable variables (e.g., ambient condi-
tions, plant loads, etc.) and controlled variables (i.e., the various process set points.)

Once the network is sufficiently trained, it is used to find values for the set points under any set of
uncontrolled variables. The technique for doing so is similar to the back-propagation training technique
of the network. The inputs corresponding to the controlled variables are replaced with virtual nodes
whose outputs are always unity. These nodes are connected to the predictor network through adjustable
weights. The optimization occurs by finding values for these weights that allow the model to predict a
desired output. These weights can be found through any number of search methods, including the gradie
descent technique used in back-propagation training. In this case, the predictor network is “trained”

FIGURE 6.5.4 Schematic of procedure for determining future process value and error.

FIGURE 6.5.5  Example of computer-simulated process step change (used to determine size of time window).
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normally, except that all weights in the network are static except those connected to the virtual 
Once weights have been found that produce the desired output, the set points can be found fro
interpretation of these weights. Constraints can be imposed on the weights either through p
limitations (e.g., freezing points) or from predictions from local-loop neural network controllers.

Fuzzy Logic Controllers
Fuzzy logic controllers (FLC) use conditional relationships to analyze one or more inputs. That 
inputs are subject to a series of if…then queries to produce some intermediate values. An example wo
be something like a simple cruise control on an automobile:

• If vehicle speed = much lower than set point, then need to increase speed = large

• If vehicle speed = slightly lower than set point, then need to increase speed = small

These intermediate values are then used to determine the actual change of speed in the car:

• If need to increase speed = large, then increase of throttle position = 10%

• If need to increase speed = small, then increase of throttle position = 3%

FIGURE 6.5.6 Example of computer simulation using a PID controller.

FIGURE 6.5.7 Example of computer simulation using a neural network controller.
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In fuzzy control, the satisfaction of a particular if statement may not lead to or be restricted by a t
or false response. A range of weighting coefficients is assigned to a particular conditional, wi
coefficients generally decreasing as the certainty of a specific condition decreases. In the exampl
“need to increase speed = large” may be assigned a certainty of 1 when the speed of the vehicl
than 50% of the desired speed of the car. This certainty will decrease as the speed of the car in
so that “need to increase speed = large” may be 0 when the speed of the car is greater than 90
desired speed, but the certainty of “need to increase speed = small” will be large. It is possible t
a given speed of the car, two or more conditions may be satisfied with different magnitudes of ce
These conditions can then be applied to the output rules along with their respective certain
determine the actual increase (or decrease) in the controller output. When the speed of the car 
the desired speed, the initial rules may yield, for example,

• Need to increase speed = large with certainty = 0.3

• Need to increase speed = small with certainty = 0.7

the actual output would then be

• Increase of throttle position = (0.3 × 10% + 0.7 × 3%)/(0.3 + 0.7) = 5.1%

The following section formalizes some of these ideas and includes a detailed example.
Section 19 Mathematics contains the formalism underlying fuzzy set theory and fuzzy logic

reader is referred to that section and the one that follows for the technical basis for FLCs.

Fuzzy Logic Controllers for Mechanical Systems

Introduction

In the last decade, FLCs have been receiving more attention (Leigh and Wetton 1983; Daley an
1985; Yasunobu and Miyamoto, 1985; Xu, 1989), not only in test cases, but also in real industrial p
control applications, including building mechanical systems (Sakai and Ohkusa, 1985; Ono et al.
Togai and Maski, 1991; Huang and Nelson, 1991; Meijer, 1992). The basic idea of this approac
incorporate the experience of human operators in the design of controllers. From a set of linguist
describing operators’ control strategies, a control algorithm can be constructed (Ralston and Ward

FIGURE 6.5.8 Using network model to optimize process control.
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Computer simulations and experiments have shown that FLCs may have better performance than thos
obtained by conventional controllers. In particular, FLCs appear very useful when the processes are to
complex for analysis using conventional control algorithms or when the available information is quali-
tative, inexact, or uncertain. Thus, fuzzy logic control may be viewed as a compromise between con
ventional precise mathematical control and humanlike decision making, as indicated by Gupta (Gup
and Tsukamoto, 1980).

However, fuzzy logic controllers sometimes fail to obtain satisfactory results with the initial rule set
drawn from the operators’ experience. This is because there still are some differences between the way
a plant is operated by an experienced operator and by an FLC using the rules based directly on h
her experience. It is often difficult to express human experience exactly using linguistic rules in a simple
form. Sometimes there is no experience that could be used to construct control rules for FLCs. In th
cases it is necessary to design, develop, and modify control rules for FLCs to obtain optimal performan
There have been few discussions about rule development and adjustment strategies for FLCs (Sheridah,
1984; Scharf and Mandic, 1985; Wakileh and Gill, 1988; Ollero and Williams, 1989).

The Basic Aspects of an FLC

An FLC includes three parts: fuzzifier, fuzzy reasoning unit, and defuzzifier. The fuzzifier converts
ordinary inputs into their fuzzy counterparts, the fuzzy reasoning unit creates fuzzy control signals
on these fuzzy variables, and the defuzzifier converts the fuzzy control signals into the real contr
outputs. The block diagram of a fuzzy control system is shown in Figure 6.5.9, where e, d, and u are
tracking error, derivative error, and output control action;  are their fuzzy counterparts,
respectively; y is the controlled parameter; and r is the set point for y. Kp is the scale factor for e, Kd is
the scale factor for d, and Ko is the output gain.

The control rules expressed in natural language are expressed in the following form:

IF (e is A) AND (d is B) THEN (u is C)

where A, B, and C are fuzzy subsets defined on the universes of discourse of e, d, and u, respectively.
Every rule is interpreted into a fuzzy reasoning matrix:

where N is the number of rules, the symbol ⊗  denotes aggregation operator, and the symbol Θ denotes
an align-turning operator (see Section 19). The general fuzzy relation matrix R can be constructed as
the union of the individual rules:

FIGURE 6.5.9 The block diagram of a fuzzy control system.
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This matrix represents the relationship between the fuzzy inputs and the fuzzy control output. The fuzzy
control output can then be calculated from the known fuzzy input  by

where the symbol ° denotes the max-min composition operator (see Section 19).
The input universe of discourse for tracking error e or derivative error d is divided into several degrees

connected with a number of fuzzy subsets by membership functions. In this study, e and d can each
range from –6 to +6, and 13 degrees are used:

–6, –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, 6

Also, seven fuzzy subsets are defined as:

NL, NM, NS, ZZ, PS, PM, PL.

where the first letters N and P mean negative and positive, the second letters L, M, and S mean large,
middle, and small, and ZZ means zero. These degrees and fuzzy subsets are shown in Table 6.5.1 which
uses a 1.0–0.8–0.5–0.1 distribution. For example, if e = 3, then its membership in PL is 0.1, it
membership in PM is 0.8, etc.

A similar analysis is given to the outputs for the control action indicated in Table 6.5.2 which uses a
1.0–0.7–0.2 distribution and where the abbreviations mean that the output control actions are Very Strong
(Level 7), STrong (Level 6), SUbstrong (Level 5), MEdium (Level 4), Slightly Small (Level 3), SMall
(Level 2), and TIny (Level 1).

The fuzzifier converts ordinary inputs into their fuzzy counterparts. In this study, a fuzzy singleton
is used as a fuzzification strategy, which interprets an input, e (or d), into a fuzzy value,  with
membership function (µ) equal to zero except at the element nearest to the real input, where µ = 1.0.
For example, if e = 3.2, the nearest element is 3, then the fuzzy singleton will be

TABLE 6.5.1 The Membership Function of Input of an FLC

A(e), B(d) –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

PL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.8 1.0
PM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.8 1.0 0.8 0.5
PS 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.8 1.0 0.8 0.5 0.1 0.0
ZZ 0.0 0.0 0.0 0.1 0.5 0.8 1.0 0.8 0.5 0.1 0.0 0.0 0.0
NS 0.0 0.1 0.5 0.8 1.0 0.8 0.5 0.1 0.0 0.0 0.0 0.0 0.0
NM 0.5 0.8 1.0 0.8 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NL 1.0 0.8 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TABLE 6.5.2 The Membership Function of Output of an FLC

C(u)  –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

VS (Level 7) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0
ST (Level 6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.2
SU (Level 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.2 0.0 0.0
ME (Level 4) 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.2 0.0 0.0 0.0 0.0
SS (Level 3) 0.0 0.0 0.2 0.7 1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0
SM (Level 2) 0.2 0.7 1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TI (Level 1) 1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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This fuzzy singleton has membership function µ = 1.0 at the point of element e = 3. The defuzzifier
converts the fuzzy control output created by the rule-based fuzzy reasoning unit into a real control 
In this study, weighted combination method is used as defuzzification strategy, which can be explained
by the following example, if

then

Rule Refinement. An FLC is characterized by a set of linguistic statements which are usually in the 
of if-then rules. The initial set of rules is usually constructed based on the operators’ experience, or
sometimes by analyzing the dynamic process of the controlled plant. Both approaches require mo
the initial set of rules to obtain an optimal rule set. This is called rule refinement.

Figure 6.5.10 shows an initial rule set analyzed on a “linguistic plane”. The horizontal axis expresses
the fuzzy subsets defined on the universe of discourse for the tracking error (e), and the vertical axis
expresses the fuzzy subsets defined on the universe of discourse for the derivative error (d ). Both have
seven fuzzy “values”: NL, NM, NS, ZZ, PS, PM, PL. On the cross points of these fuzzy values there
are output control action levels, which are also fuzzy subsets having seven “values” from Level 1 (TIny)
to Level 7 (Very Strong). For example, the cross point of e = NM and d = PM indicates u = Level 3.
This corresponds to the rule:

IF (e is NM) AND (d is PM) THEN (u is Level 3)

For example, the initial rule set could be based on the following control strategies. First, it tries to keep
a proportional relationship between the control action (u) and the tracking error (e). Note that if the
derivative error (d ) is ZZ, then the output control action (u) increases from Level 1 to Level 7 when the
tracking error (e) changes from NL to PL. Second, the influence of derivative error (d) is considered
such that, if it is positive, then increase the control action (u) a little bit, and if it is negative, then
decrease the control action (u). For example, if the tracking error (e) keeps PM, the control action (u)

FIGURE 6.5.10 The initial rule set and performance trajectory on the linguistic plane.
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increases from Level 6 to Level 7 when the derivative error (d) is positive, and it decreases from Level
6 to Level 5 when the derivative error (d) is negative.

Consider a second-order plant with a transfer function:

that is controlled using the initial rule set to respond to a step input for computer simulation. The
performance trajectory of the FLC is shown by the arrows in Figure 6.5.10 and the dynamic process 
the normalized controlled parameter (CP) is shown in Figure 6.5.11 where the horizontal axis indicates
the number of sample period (SP). The dynamic process can be divided into two stages. At the first
stage, there is a strong oscillation with a higher frequency, and, at the second stage, there is a moder
swing with a smaller frequency. Looking at the performance trajectory in the linguistic plane, we c
see that the stronger oscillation occurs at the out-cycle (points further from the center). As time increases,
the state moves to the in-cycle near the center of the plane and becomes moderate. This shows that FLCs
have the desirable property of a structure-variable controller. The rules at the out-cycle belong to one
kind of structure for the first stage, and the rules at the in-cycle belong to another structure for the seco
stage.

If the initial rule set does not satisfy a good design for a controller, then It can be modified by intuitive
reasoning. A rule set is often symmetrically positioned about the central point, which is the de
stable operating point, where the tracking error (e) and the derivative error (d) both equal zero and the
control action (u) is medium. When a positive step increase is imposed to the set point, the track
error (e) has the biggest value and the derivative error (d) is zero at the beginning time (point A in the
linguistic plane). With the regulating action, the tracking error (e) will decrease, the derivative error (d)
will be negative, and the performance trajectory will enter into the right-bottom block in the lingu
plane. So, the rules in this area have the most important effect on the behavior of the first stage of the
dynamic process. The most important area responsible for the behavior of the second stage is the centra
block.

To avoid strong oscillations, it is apparent that the control actions in the right-bottom block sh
be decreased. The modified rule set and its simulation of response to a step input are shown in Figure
6.5.12. The performance trajectory expressed in the linguistic plane is a spiral (Figure 6.5.12). We can
see that the performance of the control system has been improved, but a small oscillation still exists and
there is a little overshoot indicated by point C in Figures 6.5.12 to 6.5.13. Once again, the rule set is
modified and the final rule set and its simulation of response to a step input are shown in Figure 6.5.14

FIGURE 6.5.11 The dynamic process corresponding to Figure 6.5.10.
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and Figure 6.5.15. The final rule set gives good performance with a short rise time and a very small
overshoot and it is considered satisfactory.

By analyzing the performance trajectory on the linguistic plane, a rule set is refined. It relies heavily
on intuitive reasoning when comparing the dynamic process of the controlled parameter for the p
rule set with the desired one.

FIGURE 6.5.12 The second rule set on the linguistic plane.

FIGURE 6.5.13 The dynamic process corresponding to Figure 6.5.12.

FIGURE 6.5.14 The third rule set on the linguistic plane.
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Completeness and Interaction of Rules and Selection of Membership Functions. The second significant
influence on the behavior of an FLC is the membership functions. They should be chosen carefully in
the adjustment process. As mentioned in Section 6.3, the fuzzy subsets, language variables NL, NM,
NS, ZZ, PS, PM, and PL, are defined on the universe discourse of tracking error (e) or derivative error
(d). Some possible membership functions are shown in Figures 6.5.16 to 6.5.18. The membership
functions should be chosen to make these language variables have suitable coverage on the universe of
discourse. For the case of Figure 6.5.16, the whole range is not covered by these language variables.
There are some values of e or d, on which the membership functions of all language variables are zero.
In this case, an empty output control action could be created. This means that the control actions ar
lost for those points which are not covered by any input fuzzy subset. This is referred as the non-
completeness of control rules. FLCs should satisfy the condition of completeness for their memb
functions. The membership function shown in Figure 6.5.17 cannot be used for an effective FLC. In
other words, the union of all fuzzy subsets, Xi, i = [1,7], should be greater than zero for all e ∈  E, i.e.,

On the other hand, there can be interaction among the rules if the overlap of fuzzy subsets occurs on
the range of the universe of discourse. In this case, the membership functions have the forms shown in
Figures 6.5.17 and 6.5.18. The interaction tends to smooth out the set of control rules. Conside
single-input-single-output case for simplicity; the rule set is

IF (e is Ai) THEN (u is Ci) i  = [1,N]

FIGURE 6.5.15 The dynamic process corresponding to Figure 6.5.14.

FIGURE 6.5.16 Non-complete membership function.
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where N is the number of rules in the set. These rules are incorporated into a fuzzy relation ma
follows:

If the fuzzy value of input e is known as  the fuzzy output  then can be calculated as follows

If  is Ai,  is expected to be Ci. But now the interaction of rules due to overlap results in:

The equality is established only when no overlap occurs. This analysis is based on the fuzzy logic 
including max-min composition operator. A more-detailed example of the numeric calculation is 
in the appendices to this section.

If the overlap is heavy as shown in Figure 6.5.17, there will be large deformation and the c
rules will lose their original shape. In the limit, as the membership functions become unity for all v
the output of the FLC will always be the same fuzzy quantity. This means that the fuzzy reas
system conveys no valuable information and the FLC has lost its efficacy.

A moderate overlap, shown in Figure 6.5.18, is desirable to allow for reasoning with uncertain
the need for completeness of the control rules. How does one determine the “size” of overlap? At p
we use intuitive judgment to choose membership functions when adjusting an FLC. There app
be some latitude in choosing the amount of overlap, on which the performance of an FLC do
change significantly. The quantitative analysis will be given after further research.

FIGURE 6.5.17 Heavy overlap membership function.

FIGURE 6.5.18 Moderate overlap membership function
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When we modify the control rules in the linguistic plane, the overlapping membership functions le
the rules near the performance trajectory have an effect on the output control actions. This is because
interactions occur among the neighboring rules.

Scale Factors and Output Gain

The scale factors, Kp and Kd, and the output gain, Ko, shown in Figure 6.5.19, also have significant
influence on the behavior of an FLC. Their influence is not as complicated as those of rules a
membership functions. The adjustment for the scale factors and output gain is comparatively simple.
The scale factor Kp relates the actual range of tracking error (e) to the universe of discourse (E) defined
in the fuzzy logic system. In this work, E consists of 13 degrees as indicated in earlier sections. Then
Kp is determined as the ratio of the range of E to the range of the real variable:

For scale factor Kd, there is the similar analysis leading to

where D is the universe of discourse for derivative error (d) defined in the fuzzy logic system. Small Kp

or Kd will narrow the control band, while large Kp or Kd will lead to loss of control for large inputs.
The output gain Ko is defined as follows:

It is the ratio of range of real output control action (u) to the range of its universe of discourse (U)
defined in the fuzzy logic system. Ko acts as an amplification factor of the whole FLC. Figure 6.5.19
shows the influence of Ko on the step response simulation of an FLC with the final rule set used in
Figure 6.5.14. Increasing Ko results in a shorter rise time. The performance trajectory in the linguistic
plane will become steeper for the first stage and oscillation occurs. Decreasing Ko results in a longer
rise time, and the performance trajectory in the linguistic plane will become moderate during thfirst
stage. But, in our simulation, oscillation still occurred. This is because different Ko, larger or smaller,
results in a new route of the performance trajectory which will activate the different rules which might

FIGURE 6.5.19 The influence of Ko on the behavior of FLCs.
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cause oscillation. So the influence of output gain, Ko, should be considered together with the change
the activated rules.

Conclusion

An FLC can perform much better than a conventional controller, such as a PID controller, if the
has been well constructed. The main disadvantage of using FLCs today seems to be the la
systematic procedure for the design of FLCs. The general method for designing an FLC is to u
and observation. No useful mathematical tool has yet been developed for the design of an FLC b
of its fuzziness, complexity, and nonparameterization.

There are three significant elements that have notable influence on the behavior of an FLC:

1. The control rules expressed in linguistic language,
2. The membership functions defined for fuzzy subsets, and
3. The scale factors attached to the input and the output gains.

The control rules play the main role in forming the dynamics of FLCs. The rule set can be ana
and modified using the performance trajectory technique and evaluated using the dynamic proces
of the controlled parameter. The membership functions define the “shape” of fuzzy subsets. They
have appropriate width to avoid noncompleteness and suitable interaction among the fuzzy contro
The scale factors (Kp and Kd) and output gain (Ko) serve as amplification factors.

At present, each application must be individually designed. The initial sets of rules are speci
set up for different applications. Work is now underway to develop a self-adaptive FLC which
choose the initial set of rules automatically according to the process dynamics and refine it on th
of the global performance evaluation.
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Table of Transforms

The following table lists some of the more common transforms used in the analysis of building sy
More-extensive tables can be found in most mathematics and numerical analysis reference boo

Special FLC Mathematical Operations

⊗  aggregation operator

Θ align-turning operator

o max-min composition operator

U union operator

∃  exists

∈  in

∀  for all

⊆  is the subset of

The aggregation operator (⊗ ) is used to define a two-dimensional fuzzy variable F from fuzzy subsets
A and B (one-dimensional fuzzy variables) as follows:

List of Some s- and z-Transforms

Continous-Time 
Domain

Frequency 
Domain

Discrete-Time 
Domain

1 t = 0 0 t ≠ 0 — 1
1 t = k 0 t ≠ k — z–k
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where

ei is the ith element of the subset A(e) and µA(i) is its membership function; dj is the jth element of the
subset B(d) and µB(j) is its membership function.

The align-turning operator (Θ) is an operator acting on a two-dimensional fuzzy variable to crea
one-dimensional fuzzy variable, which has a set of membership functions aligned according to a 
order, as follows:

where j varies from 1 to N first and i varies from 1 to M.

An Example of Numeric Calculation for Influence of Membership Function

Suppose that there are two rules:

R1: IF (e is PM) THEN (u is VS) and

R2: IF (e is PS) THEN (u is ST).

For the first rule,

µ µ µF A Bi j i j, ,( ) = ( ) ( )( )min

A e e ii A( ) = ( )( ),µ

B d d jj B( ) = ( )( ),µ

  

S A B

i j M NS S S S

= [ ]
= ( ) ( ) ( ) ( )( )

⊗ Θ

µ µ µ µ1 1 1 2, , , , , , , , ,K K

˜

˜

e

u

1

1

= ( )

= ( )

0,  0,  0,  0,  0,  0,  0,  0.1,  0.5,  0.8,  1.0,  0.8,  0.5

0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0.2,  0.7,  1.0
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Then the rule can be interpreted into a fuzzy reasoning matrix as follows:

where the membership in R1 for the element (i,j) of the matrix,  is

For the second rule,

R e u1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

=

=

˜ ˜

. .

⊗

11 0 1

0 0 0 0 0 0 0 0 0 0 0 2 0 5 0 5

0 0 0 0 0 0 0 0 0 0 0 2 0 7 0 8

0 0 0 0 0 0 0 0 0 0 0 2 0 7 1 0

0 0 0 0 0 0 0 0 0 0 0 2 0 7 0 8

0 0 0 0 0 0 0 0 0 0 0 2 0 5 0 5

.

. . .

. . .

. . .

. . .

. . .

















































≡ ( )µ R i j
1

,

µ R i j
1
( , )

µ µ µR e ui j i j
1 1 1

, ,˜ ˜( ) = ( ) ( )( )min

ẽ2 = ( )0,  0,  0,  0,  0,  0.1,  0.5,  0.8,  1.0,  0.8,  0.5,  0.1,  0

ũ2 = ( )0,  0,  0,  0,  0,  0,  0,  0,  0.2,  0.7,  1.0,  0.7,  0.2
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Then the second rule can be interpreted into a fuzzy reasoning matrix as follows:

where the membership in R2 for the element (i,j) of the matrix,  is

The general fuzzy relation matrix R is then constructed as the union of these two rules:

R e u2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
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VS
where

Assume that there is an input (e) and its fuzzy value  = PM, then the output is expected to be 
according to the first rule. But now the output is calculated through the fuzzy matrix R as follows:

where

While

So,

µ µ µR R Ri j i j, ,( ) = ( ) ( )( )max
1 2

ẽ

  

˜ ˜u e R

R

R

=

= ( )

= ( )

o

o

o

= PM

0,  0,  0,  0,  0,  0,  0,  0.1,  0.5,  0.8,  1.0,  0.8,  0.5

0,  0,  0,  0,  0,  0,  0,  0,  0.2,  0.7,  0.8,  0.7,  1.0

µ µ µ˜ ˜max , ,u i e Rj i i j( ) = ( ) ( )( )( )min

ũ1 =

( )

VS

= 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0.2,  0.7,  1.0

˜ ˜u u1 ⊆
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