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6.1 Human-Machine Interaction

Thomas B. Sheridan

Over the years machines of all kinda/é been immpved and made more reliableokever, machines
typically operate as components ofgar systems, such as transportation systems, communication
systems, marfacturing systems, defense systems, health care systems, and\dtlemany aspects
of such systems can be anaén been automated, the human operator is retainedriy cagesThis
may be because of economics, tradition, cost, or (mkely)i capabilities of the human to peiree
patterns of information and weigh subfigetors in making control decisions which the machine cannot
match.

Although the public as well as those responsible for system operation usually demand that there be
a human operatp“human error” is a major reason for systémiure And aside from pvention of

© 1999 by CRC Press LLC 6-1



6-2 Section 6

errar, getting the best performance out of the system means that human and machinewotdnge
together Hectively — be properly “impedance matchie@iherefore, the performance capabilities of the
human relave to those of the machine must bketainto account in system design.

Efforts to “optimize” the human-machine interaction are meaningless in the mathematical sense of
optimization, since most important interactions between human and machine cannot be reduced to a
mathematical form, and the objefet function (defining what is good) is not easily obtainedyngiven
conext. For this reason, engineering the human-machine interaction, much as in management or med-
icine, remains an art more than a science, based on laboegperyments and practicakperience.

In the broadest sense, engineering the human-machinaagéncludes all ofrgonomicsor human
factors engineeringand goes welldyond design of displays and contr@vites. Egonomics includes
not only questions of sensoryysiology, whether or not the operator can see the displays or hear the
auditory warnings,but also questions dsiomechanicshow the body roves, and whether or not the
operator can reach and apply proper force to the controls. It further includésldiseof operator
selection and training, human performance under stress, Hactars in maintenance, and mgather
aspects of the relation of the human to technoldbis section focuses primarily on human-machine
interaction in control of systems.

The human-machine interactions in control are considered in terfigwe 6.1.1In Figure 6.1.1a
the human directly controls the machine; i.e., the control loop to the machine is closed through the
physical sensors, displays, human senses (visual, ayttctile), brain, human muscles, contrelides,
and machine actuators. Figure 6.1.1b illustrates what has come to be salpethdsory combl system
wherein the human intermittently instructs a computer as to goals, constraints, and procedures, then
turns a taslover to the computer to perform automatic control for some period of time.

control
actions |
human machine
operator (physical
- process)
feedback
(displays)
a
control control
actions signals
human = — — »t L  machine
operator computer (physical
e — — ] process)
feedback feedback
(displays) signals
b

FIGURE 6.1.1 Direct manual control (a) and supervisory control (b).

Displays and controletices can banalogic(movement signal directions aesitent of control action,
isomorphic with theworld, such as an automobile steering wheel or computer mouse controls, or a
moving needle or pictorial display element). Optlcan besymbolic(dedicatedbuttons or general-
purposekeyboard controls, icons, or alarm light displays). In normal human discourse we use both
speech (symbolic) and gestures (analogic) and on paper we write alphanexhésiobolic) and dw
pictures (analogic)The system designer must decide which type of displays or controls best suits a
particular application, and/or what mix to u3é&e designer must bavare of important criteria such
as whether or not, for a proposed design, changes in the displays and controls caused by the human
operator correspond in a natural and common-sgagd¢o “more” or “less” of someariable agxpected
by that operator and correspond to cultural norms (such as reading from left to right in western countries),
and whether or not the avement of the display elements correspond geometricallyot@mments of
the controls.
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Mechanical System Controls 6-3

Direct Manual Control

In the 1940s aircraft designers appreciated the need to characterize the transfer function of the human
pilot in terms of a dferential equation. Indeed, this is necessary fignahicle or controlled lgysical

process for which the human is the contmpleeFigure 6.1.2In this case both the human operador

and the physical proceBdie in the closed loop (wheké andP are Laplace transforms of the component
transfer functions), and t#P combination determines whether the closed-loop is inherently stable (i.e.,

the closed loop characteristic equatioft HP = 0 has only egaive real roots).

disturbance, d j

reference human
state, r emor | human response_ | physical process state, x

operator, H process, P gl

FIGURE 6.1.2 Direct manual control-loop analysis.

In addition to the stability criterion are the criteria of rapid response of procesx tiadedesired
or reference state with minimum overshoot, zero “steady-state error” betweeand outputx, and
reduction to near zero of théfects of ay disturbance inputl. (The latter Hects are determined by
the closed-loop transfer functioms= HP/(1 + HP)r + 1/(1 + HP)d, where if the magnitude df is
large enoughHP/(1 + HP) approaches unity and 1/@ HP) approaches 0. Unhappilthere are
ingredients oH which produce delays in combination with magnitude and thereby can cause igstabilit
Therefore H must be chosen carefully by the human fay givenP.)

Research to characterize the pilot in these terms resulted in theedjsthat the human adapts to a
wide variety of physical processes so as tketdP = K(1/s)(e*7). In otherwords, the human adjusts
H to m&e HP constantThe termK is anoverall amplitude ogain, (15) is the Laplace transform of
an inegrata, and €°7) is a delayT long (the latter time delay being anauaidable property of the
newous system)ParametersK andT vary modestly in a predictabigay as a function of thehgsical
process and the input to the control syst&his model is ow widely accepted and used, not only in
engineering aircraft control systentsjt also in designing automobiles, ships, nuclear and chemical
plants, and a host of other dynamic systems.

Supervisory Control

Supervisory control may be filged by the analogy between a supervisor of subordindfeirstan
organization of people and the humaverseer of a modern computaediated semiautomatic control
system The supervisoriges human subordinates general instructions whighithturn may translate
into action The supervisor of a computeontrolled system does the same.

Defined stricy, supervisory combl means that one or more human operators are setting initial
conditions fg, intermittently adjusting, and reeeg high-kvel information from a computer that itself
closes a control loop in a wellfileed process through artificial sensors affdcéors.For some time
period the computer controls the process automaticall

By a less strict definitiorsupervisory combl is used when a computer transforms human operator
commands to generate detailed control actions, &essignificant transformations of measured data
to produce irggrated summary displays. In this latter case the computer needvadhh capability to
commit actions based upomw information from the mvironment, whereas in thierst it necessarily
must The wo situations may appear similar to the human supengsae the computer mediates both
human outputs and human inputs, and the supervisor is thage@fnom detaile@vents at thedw level.
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6-4 Section 6

A supervisory control system is representefigure 6.1.3Here the human operator issues commands
to ahuman-interactiveomputer capable of understanding higrel language and pviding integrated
summary displays of process state information back to the opénai® compute typically located in
a control room or cockpit orflice near to the supervisan turn communicates with at least one, and
probably may (hence the dotted linesgsk-interactivecomputers, located with the equipmergythre
controlling The task-interatte computers thus rewe subgoal and conditional branching information
from the human-interaige compute Using such information as reference inputs, the task-inkezact
computers see to close dw-level control loops between ditiial sensors and mechanical actuators;
i.e., they accomplish thedw-level automatic control.

human operator

A state 8 advice
information requests

for advice y

commands

human-interactive computer

(combines high level control
and expert advisory system)

// ! AN
task-interactive task-interactive task-interactive
computer 1 computer 2 computer 3
A A A

Y A
task 1 task 2 task 3

FIGURE 6.1.3 Supervisory control.

The low-level task typically operates at sombygical distance from the human operator and his
human-friendly display-control computd& herefore, the communication channels between computers
may be constrained by multgaing, time delg, or limited bandwidthThe task-interacte compute
of course, sends analog control signals to andivezenalog feedback signals from the controlled
process, and the latter does the same with rthieoement as it operatesghicles noving relatve to
air, sea, or earth, robots manipulating objects, process plants modifying products, etc.).

Supervisory command and feedback channels for process state informatiomweréndfigure 6.1.3
to pass through the left side of the human-intéractompute On the right side are represented decision-
aiding functions, with requests of the computer for advice and displayed output of advice (from a
databasesgxpert system, or simulation) to the operaldhere are may new developments in compute
based decision aids for planning, editing, monitoring, faldre detection being used as an auxiliary
part of operating dynamic systems.fleetion upon the neous system of higher animaleveals a
similar kind of supervisory control wherein commands are sent from the brain togéozgia, and
peripheral motor control loops are then closed locally through receptors in the muscles, tendons, or skin.
The brain, presumagl does highelevel planning based on itan stored data and “mental models
an internalizedxpert systenawailable to povide advice and permit trial responses before commitment
to actual response.

Theorizing about supervisory contragan as aircraft and spacecraft became partially automated. It
becamesvident that the human operatwas being replaced by the computer for direct control respon-
sibility, andwas noving to a rew role of monitor and goal-constraint setfen added incelive was the
U.S. space program, which posed the problemaf b human operator on Earth could control a
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manipulator arm ovehicle on the moon through a 3-sec communication round-trip timg d@akonly
solution whichavoided instabilitywas to mée the operator a supervisory controller communicating
intermittently with a computer on the moon, which in turn closed the control loop Tererapid
development of microcomputers has forced a transition from manual control to supervisory control in
avariety of industrial and military applications (Sheridan, 1992).

Let us row consider somexamples of human-machine interaction, particularly those which illustrate
supervisory control in itgarious forms. First, we consider three formsetdiicle control, namgl control
of modern aircraft, “intelligent” higlay vehicles, and high-speed trains, all of whiekehboth human
operators in theehicles as well as humans in centralizedfitr@ontrol centers. Second, we consider
telerobots for space, undersea, and medical applications.

Advanced Control of Commercial Aircraft

Flight Management Systems

Aviation has appreciated the importance of human-machine interfictionts beginning, and today
exemplifies the most sophisticated forms of such interadfidhmie there lave been may goodexamples

of display and control desigwer the years, the currentvglopment of the flight management systems
(FMS) is the epitome. It also guides anexcellentexample of supervisory control, where the pflas

the aircraft by communicating in highvel language through a computer intermedi@he FMS is a
centralized computer which interacts with a gneatety of sensors, communication from the ground,
as well as may displays and controls within the aircraft. It embodiesyrfanctions and mediates most
of the pilot information requirementsatn in Figure 6.1.4 Gone are the days when each sensor had
its own displg, operating independently of all other sendisplay circuits The FMS, forexample,
brings together all of thearious autopilot modes, from long-standiogAlevel control modes, wherein
the aircraft is commanded to go to and hold a commanded altitude, heading, and speed, to more-
sophisticated modes where the aircraft is instructeftiyta gven course, consisting of a sequence of
way points (latitudes and longitudes)vatious altitudes, aneven land automatically at avgn airport

on a gven rurway.
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FIGURE 6.1.4 Pilot information requirements. (From Billings, 1991.)
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6-6 Section 6

Figure 6.1.5llustrates one type of display mediated by the FMS, in this casgating may formerly
separate components of information. Mostly it is a multicolor plan-vhap slkewing position and
orientation of important objects rel& to onés own aircraft (the triangle at the bottom). Itosls
heading (compass arc at top, present heading),1g¥und speed plus wind speed and wind direction
(upper left), actual altitude relat to desired altitudesértical scale on right side), programmed course
connectingvariousway points (OPH andLH), saliert VOR radar beacons to the right and left of present
position/direction with their codes and frequenciesvér left and right corners), the location ey
VORs along the course (three-cornered symbols), the location of weathewtideel (tvo gray blobs),
and a predicted trajectory based on present turn rai@irghthat the right turn is appropriately getting
back on course.

FIGURE 6.1.5 Integrated aircraft map displa(From Billings, 1991.)

Programming the FMS is done through a specialkagtboard andext display unit(Figure 6.1.%
having all the alphanumerikeys plus a number of special functikeys. The displays in this case are
specialized to the fferent phases of a flight (taxikedtf, departure, enroute approach, land, etc.), each
phase bving up to threedvels of pages.

The FMS maées clear that designing displays and controls is no longer a matter of whattealh be
— the computer abws essentially @y concévable display/control to be realizetihe computer can
also povide a great deal of real-time advice, especially inrgereies, based on its nyasensors and
stored kimwledge about tw the aircraft operates. But pilots are not sugy treed all the information
which aircraft designensould like to gve them, and dwve anexpression “killing us with kindness” to
refer to this plethora ofvailable information The question is what should be designed based on the
needs and capabilities of the pilot.

Boeing, McDonnell Douglas, dAirbus have different philosophies for designing the FM$Srbus
has been the most aggressin automating, intending to k& piloting easier and safer for pilots from
countries with less well established pilot training. Unfortuyatiélis these most-automated aircraft
which have had the most accidents of the modern commercial jetsfaetavhich has precipitated
vigorous debate aboubilv far to automate.
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FIGURE 6.1.6 Flight management system control and display unit. (From Billings, 1991.)

Air Traffic Control

As demands for air travel continue to increase, so do demands for air traffic control. Given what are
currently regarded as safe separation criteria, air space over major urban areas is already saturated, so
that simply adding more airports is not acceptable (in addition to which residents do not want more
airports, with their noise and surface traffic). The need is to reduce separations in the air, and to land
aircraft closer together or on parallel runways simultaneously. This puts much greater demands on air
traffic controllers, particularly at the terminal area radar control centers (TRACONSs), where trained
operators stare at blips on radar screens and verbally guide pilots entering the terminal airspace from
various directions and altitudes into orderly descent and landing patterns with proper separation between
aircraft.

Currently, many changes are being introduced into air traffic control which have profound implications
for human-machine interaction. Where previously communication between pilots and air traffic control-
lers was entirely by voice, now digital communication between aircraft and ground (a system called
datalink) allows both more and more reliable two-way communication, so that weather and runway and
wind information, clearances, etc. can be displayed to pilots visually. But pilots are not so sure they
want this additional technology. They fear the demise of the “party line” of voice communications with
which they are so familiar and which permits all pilots in an area to listen in on each other’s conversations.

New aircraft-borne radars allow pilots to detect air traffic in their own vicinity. Improved ground-
based radars detect microbursts or wind shear which can easily put an aircraft out of control. Both types
of radars pose challenges as to how best to warn the pilot and provide guidance as to how to respond.
But they also pose a cultural change in air traffic control, since heretofore pilots have been dependent
upon air traffic controllers to advise them of weather conditions and other air traffic. Furthermore, because
of the new weather and collision-avoidance technology, there are current plans for radically altering the
rules whereby high-altitude commercial aircraft must stick to well-defined traffic lanes. Instead, pilots
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6-8 Section 6

will have great flexibility as to altitude (to find the most favorable winds and therefore save fuel) and
be able to take great-circle routes straight to their destinations (also saving fuel). However, air traffic
controllers are not sure they want to give up the power they have had, becoming passive observers and
monitors, to function only in emergencies.

Intelligent Highway Vehicles

Vehicle Guidance and Navigation Systems

The combination of GPS (global positioning system) satellites, high-density computer storage of map
data, electronic compass, synthetic speech synthesis, and computer-graphic displays allows cars and
trucks to know where they are located on the Earth to within 100 m or less, and can guide a driver to
a programmed destination by a combination of a map display and speech. Some human factor challenges
are in deciding how to configure the map (how much detail to present, whether to make the map north-
up with a moving dot representing one’s own vehicle position or current-heading-up and rapidly changing
with every turn). The computer graphics can also be used to show what turns to anticipate and which
lane to get in. Synthetic speech can reinforce these turn anticipations, can caution the driver if he is
perceived to be headed in the wrong direction or off course, and can even guide him or her how to get
back on course. An interesting question is what the computer should say in each situation to get the
driver’s attention, to be understood quickly and unambiguously but without being an annoyance. Another
guestion is whether or not such systems will distract the driver’s attention from the primary tasks, thereby
reducing safety. The major vehicle manufacturers have developed such systems, they have been evaluated
for reliability and human use, and they are beginning to be marketed in the United States, Europe, and
Japan.

Smart Cruise Control

Standard cruise control has a major deficiency in that it knows nothing about vehicles ahead, and one
can easily collide with the rear end of another vehicle if not careful. In a smart cruise control system a
microwave or optical radar detects the presence of a vehicle ahead and measures that distance. But there
is a question of what to do with this information. Just warn the driver with some visual or auditory
alarm (auditory is better because the driver does not have to be looking in the right place)? Can a warning
be too late to elicit braking, or surprise the driver so that he brakes too suddenly and causes a rear-end
accident to his own vehicle. Should the computer automatically apply the brakes by some function of
distance to obstacle ahead, speed, and closing deceleration. If the computer did all the braking would
the driver become complacent and not pay attention, to the point where a serious accident would occur
if the radar failed to detect an obstacle, say, a pedestrian or bicycle, or the computer failed to brake?
Should braking be some combination of human and computer braking, and if so by what algorithm?
These are human factor questions which are currently being researched.

It is interesting to note that current developmental systems only decelerate and downshift, mostly
because if the vehicle manufacturers sell vehicles which claim to perform braking they would be open
to a new and worrisome area of litigation.

The same radar technology that can warn the driver or help control the vehicle can also be applied
to cars overtaking from one side or the other. Another set of questions then arises as to how and what
to communicate to the driver and whether or not to trigger some automatic control maneuver in certain
cases.

Advanced Traffic Management Systems

Automobile congestion in major cities has become unacceptable, and advanced traffic management
systems are being built in many of these cities to measure traffic flow at intersections (by some
combination of magnetic loop detectors, optical sensors, and other means), and regulate stoplights and
message signs. These systems can also issue advisories of accidents ahead by means of variable message
signs or radio, and give advice of alternative routings. In emergencies they can dispatch fire, police,
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ambulances, oraw trucks, and in the case of tunnels can stawndentering tréic completely if
necessar These systems are operated by a combination of computers and humans from centralized
control rooms The operators look at banks of video monitors which let them see ffie fi@v at
different locations, and compuigraphic displays of maps, alarm wawes, and éxtual messageJhe
operators get advice from compubasedexpert systems, which suggest best responses based on
measured inputs, and the operator must decide whether to accept the ceraguies, whether to seek
further information, and dw to respond.

High-Speed Train Control

With respect to ew electronic technology for information sensing, storage, and processing, railroad
technology has lagged behind that of aircraft andvsgtvehicles,but currently is catching ughe
role of the human operator in future rail systems is being debated, since for some limited wigjt-of-
trains (e.g., in airports) one cargae that fully automatic control systemewnperform safely and
efficiently. The train diver's principal job is speed control (though there areyn@her monitoring
duties he must perform), and in a train this task is much méfreuttithan in an automobile because
of the huge inertia of the train — itkizs 2 to 3 km to stop a high-speed train. Speed limit§i>are
at reducedevels for cuwes, bridges, grade crossings, and densely populated areasyayside signals
temporarily commandolver speeds if there is maintenance being performed on the track, if there are
poor ewvironmental conditions such as rock slides or deepv,sar especially if there is another train
aheadThe diver must oby all speed limits and get to thext station on time. Learning to marneu
the train with its long time constants caketanonths, iyen that for the speed control task thevelts
only input currently is an indication of current speed.

The authdss laboratory has proposed esncompute-based display which helps thewdr anticipate
the future &ects of current throttle and k& actionsThis approach, based on a dynamic model of the
train, gves an instantaneous prediction of future train position and speed based on current acceleration,
so that speed can be plotted on the display assuming the operator holds to clkeethtditée settings.
It also plots trajectories for maximum emgercy braking and maximum service braking. In addition,
the computer generates a speed trajectory which adheres atoalh]Knture speed limits, gets to the
next station on time, and minimizes fuel/ege Figure 6.1.&hows the laboratoryersion of this displg
which is currently beingvaluated.

Telerobots for Space, Undersea, and Medicine

When nuclear gwer was first adopted in the late 1940s engineegaib the dvelopment of maste
slave remotemanipulators, by which a human operator at one location could position and o®eitea d
attached to his hand, and awsenechanism-controlled grippevould nove in correspondence and
handle objects at another locatidkt about the same time, remotely controlled wheeleticles,
submarines, and aircrafedgen to be dveloped. Such manipulators amehicles remotely controlled by
humans are calletkleoperators Teleoperator technology got a big boost from the industrial robot
technolog, which came in a decade or so tatnd povided impoved vision, force, and touch sensors,
actuators, and control sofire. Lage teleoperators wereagtloped for rugged mining and undersea
tasks, and small teleoperators weeeetbped for delicate tasks suchege sugely. Eventualy, teleop-
erators lve come to be equipped with senatforce feedback, so that the human operator not only
can see the objects in the rematei®nment,but also can feel them in his grasp.

During the time of th Apollo flights to the moon, and stimulated by the desire to control lunar
manipulators andehicles from Earth and tHact that the uavoidable round-trip time delays of 3 sec
(speed of light from Earth to moon and baalguld not permit simple closed loop control, supervisory
controlled teleoperators werev@loped The human could communicate a subgoal to be reached and a
procedure for getting there, and the teleopenaturid be turned loose for some short period to perform
automatical. Such a teleoperator is calledederobot.

© 1999 by CRC Press LLC



6-10 Section 6

Epeed prediction: current throttle settin

FIGURE 6.1.7 Prototype of computegenerated display for high speed trains. (frfskey, 1995.)

Figure 6.1.8hows a the FlighTelerobotic Servicer (FTS)edeloped by Martin Marietta for the U.S.
Space Station Freedom. It hastsven-cegree of freedom (DOF) arms (including gripper) and one
five-DOF “leg” for stabilizing itself while the armsork. It haswo video ‘eyes” to present a stereoimage
to its human operatolt can be configured either as a mastave teleoperator (under direct human
control) or as a telerobot (ableaxecute small programmed tasks usingit® eyes and force sensors).
Unfortunatey, the FTS projectvas canceled by Congress.

Camera Positioning Assembly

PDGF Transporter VF

Attachment,Stabilization and

Positioning System Power Module

Banery Regulator/Charger

FIGURE 6.1.8 Flight Telerobotic Servicer prototype design. (CourtesjNASA.)
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Figure 6.1.%hows the remotely operated submersitldsondeveloped ly Woods Hole Oceanographic
Institution. It is the big brother afason Juniarwhich svam into the interior of the ghiTitanic and
made a widely \ewed video record when the lattesas first disovered. It has a single manipulator
arm, sonar and photo sensors, and four thrusters which can be oriented within limited range and which
enable it to rove in any direction. It is designed for depths up to 6000 m — rathears pressures! It
too, can be operated either in direct teleoperator mode or as a telerobot.
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FIGURE 6.1.9 Deep ocean submersiblason (Courtesy 6Woods Hole Oceanographic Institution.)

Common Criteria for Human Interface Design

Design of operator control stations for teleoperators poses the same types of problems as design of
controls and displays for aircraft, highy vehicles, and traind’he displays must sk the important
variables unambiguously to wieaer accuray is requiredbut more than that must @lv the variables

in relation to one another so as to clearly portray the current “sittigg@uationawareness is currently

a popular test of the human operator in cam@gystems)Alarms must get the operatsrattention,

indicate by éxt, symbol, or location on a graphic display what is abnormal, where in the system the
failure occurred, what is thergercy, if response isngent, andeven suggest what action tdkea (For

example, the ground-proximityarning in an aircraft iges a loud “Whoop, whoop!” fallved by a

distinct spken command “Pull up, pull up!”) Controls — whether analogisiicks, mastearms, or

knobs — or symbolic special-purpdagtons or general-purpo&eyboards — must be natural and easy

to use, and require little memory of special procedures (computer icons amvsvolmwell here)The
placement of controls and instruments and their mode and direction of operation must correspond to the
desired direction and magnitude of system response.

Human Workload and Human Error

As noted abve, rew technology atiws combination, iregration, and simplification of displays compared
to the intolerable plethora of separate instruments in older aircraft cockpits and plant control' heoms
computer has t@nover more and more functions from the human oper&uwientially these changes
meke the operatos task easre However, it also albws for much more information to be presented,
moreextensve advice to beigen, etc.

These adances hve ekbvated the stature of the human operator froaviding both physical engy
and control, to mviding only continuous control, thnally being a supervisor or a robotiehicle or
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system. Expert systems can now answer the operator’s questions, much as does a human consultant, or
whisper suggestions in his ear even if he doesn’t request them. These changes seem to add many cognitive
functions that were not present at an earlier time. They make the operator into a monitor of the automation,
who is supposed to step in when required to set things straight. Unfortunately, people are not always
reliable monitors and interveners.

Mental Workload

Under such complexity it is imperative to know whether or not the mental workload of the operator is
too great for safety. Human-machine systems engineers have sought to develop measures of mental
workload, the idea being that as mental load increases, the risk of error increases, but presumably
measurable mental load comes before actual lapse into error.

Three approaches have been developed for measuring mental workload:

1. The first and most used is the subjective rating scale, typically a ten-level category scale with
descriptors for each category from no load to unbearable load.

2. The second approach is use of physiological indexes which correlate with subjective scales,
including heart rate and the variability of heart rate, certain changes in the frequency spectrum
of the voice, electrical resistance of the skin, diameter of the pupil of the eye, and certain changes
in the evoked brain wave response to sudden sound or light stimuli.

3. The third approach is to use what is called a secondary task, an easily measurable additional task
which consumes all of the operator’s attention remaining after the requirements of the primary
task are satisfied. This latter technique has been used successfully in the laboratory, but has
shortcomings in practice in that operators may refuse to cooperate.

Such techniques are now routinely applied to critical tasks such as aircraft landing, air traffic control,
certain planned tasks for astronauts, and emergency procedures in nuclear power plants. The evidence
suggests that supervisory control relieves mental load when things are going normally, but when
automation fails the human operator is subjected rapidly to increased mental load.

Human Error

Human error has long been of interest, but only in recent decades has there been serious effort to
understand human error in terms of categories, causation, and remedy. There are several ways to classify
human errors. One is according to whether it is an erromigsion(something not done which was
supposed to have been done)commission(something done which was not supposed to have been
done). Another isslip (a correct intention for some reason not fulfilled) vsniatake(an incorrect
intention which was fulfilled). Errors may also be classified according to whether they are in sensing,
perceiving, remembering, deciding, or acting. There are some special categories of error worth noting
which are associated with following procedures in operation of systems. One, for example, is called a
capture error wherein the operator, being very accustomed to a series of steps, say, A, B, C, and D,
intends at another time to perform E, B, C, F. But he is “captured” by the familiar sequence B, C and
does E, B, C, D.

As to effective therapies for human error, proper design to make operation easy and natural and
unambiguous is surely the most important. If possible, the system design should allow for error correction
before the consequences become serious. Active warnings and alarms are necessary when the system
can detect incipient failures in time to take such corrective action. Training is probably next most
important after design, but any amount of training cannot compensate for an error-prone design. Pre-
venting exposure to error by guards, locks, or an additional “execute” step can help make sure that the
most critical actions are not taken without sufficient forethought. Least effective are written warnings
such as posted decals or warning statements in instruction manuals, although many tort lawyers would
like us to believe the opposite.
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Trust, Alienation, and How Far to Go with Automation

Trust

If operators do not trust their sensors and displays, expert advisory system, or automatic control system,
they will not use it or will avoid using it if possible. On the other hand, if operators come to place too
much trust in such systems they will let down their guard, become complacent, and, when it fails, not
be prepared. The question of operator trust in the automation is an important current issue in human-
machine interface design. It is desirable that operators trust their systems, but it is also desirable that
they maintain alertness, situation awareness, and readiness to take over.

Alienation

There is a set of broader social effects that the new human-machine interaction can have, which can be
discussed under the rubric alfenation.

1. People worry that computers can do some tasks much better than they themselves can, such as
memory and calculation. Surely, people should not try to compete in this arena.

2. Supervisory control tends to make people remote from the ultimate operations they are supposed
to be overseeing — remote in space, desynchronized in time, and interacting with a computer
instead of the end product or service itself.

3. People lose the perceptual-motor skills which in many cases gave them their identity. They become
"deskilled", and, if ever called upon to use their previous well-honed skills, they could not.

4. Increasingly, people who use computers in supervisory control or in other ways, whether inten-
tionally or not, are denied access to the knowledge to understand what is going on inside the
computer.

5. Partly as a result of factor 4, the computer becomes mysterious, and the untutored user comes to
attribute to the computer more capability, wisdom, or blame than is appropriate.

6. Because computer-based systems are growing more complex, and people are being “elevated” to
roles of supervising larger and larger aggregates of hardware and software, the stakes naturally
become higher. Where a human error before might have gone unnoticed and been easily corrected,
now such an error could precipitate a disaster.

7. The last factor in alienation is similar to the first, but all-encompassing, namely, the fear that a
“race” of machines is becoming more powerful than the human race.

These seven factors, and the fears they engender, whether justified or not, must be reckoned with.
Computers must be made to be not only “human friendly” but also not alienating with respect to these
broader factors. Operators and users must become computer literate at whatever level of sophistication
they can deal with.

How Far to Go with Automation

There is no question but that the trend toward supervisory control is changing the role of the human
operator, posing fewer requirements on continuous sensory-motor skill and more on planning, monitor-
ing, and supervising the computer. As computers take over more and more of the sensory-motor skill
functions, new questions are being raised regarding how the interface should be designed to provide the
best cooperation between human and machine. Among these questions are: To what degree should the
system be automated? How much “help” from the computer is desirable? What are the points of
diminishing returns?

Table 6.1.1 lists ten levels of automation, from 0 to 100% computer control. Obviously, there are few
tasks which have achieved 100% computer control, but new technology pushes relentlessly in that
direction. It is instructive to consider the various intermediate levels of Table 6.1.1 in terms not only of
how capable and reliable is the technology but what is desirable in terms of safety and satisfaction of
the human operators and the general public.
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TABLE 6.1.1 Scale of Degrees of Automation

The computer offers no assistance; the human must do it all.

The computer offers a complete set of action alternatives, and

Narrows the selection down to a few, or

Suggests one alternative, and

Executes that suggestion if the human approves, or

Allows the human a restricted time to veto before automatic execution, or
Executes automatically, then necessarily informs the human, or

Informs the human only if asked, or

Informs the human only if it, the computer, decides to

The computer decides everything and acts autonomously, ignoring the human.
The current controversy about how much to automate large commercial transport
aircraft is often couched in these terms

©CoNogOMONE

N
©

Source: Sheridan 1987. With permission.
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6.2 The Need for Control of Mechanical Systems

Peter S. Curtiss

Process control typicallywolves some mechanical system that needs to be operated in fasttioa
that the output of the system remains within its design operating. frgjebjedtve of a process control
loop is to maintain the process at the set point under thmving dynamic conditions:

¢ The set point is changed;
« The load on the process is changed;
¢ The transfer function of the process is changed or a disturbance is introduced.

The Classical Control System Representation

Feedback-Loop SystemA feedback(or closed-loop system contains a process, a sensor and a con-
troller. Figure 6.2.1below shows some of the components and terms used when discussing feedback
loop systems.

controiler
error, output process
SET POINT e(t value, y(t)

)
) N CONTROLLER }__.{ ACTUATO?HPROCES?}_——»

1

external

FIGURE 6.2.1 Typical feedback control schematic diagram.

ProcessA processis a system that produces a motion, a temperature chafige;, @ pressure, or
many other actions as a function of the actuator positione&tednal inputsThe output of the process
is called the processlue. If a posive action in the actuator causes an increase in the prealess
then the process is callglifect acting If positive action in the actuator decreases the procdss, it
is calledreverse acting

Senso. A sensoris a pneumatic, fluidic, or electronic or othevide that produces some kind of signal
indicaive of the processgalue.

SetPoint. The set pointis the desiredalue for a process outputhe dfference between the set point
and the procesglue is called th@rocess amor.

Controller. A contoller sends signals to an actuator ffeet changes in a procesghe controller
compares the set point and the procedse to determine the process ertothen uses this error to
adjust the output and bring the process back to the set phmtcontrolle gain dictates the amount
that the controller adjusts its output for iaem erra.

Actuator. An actuatoris a pneumatic, fluidic, electric, or othewite that performsry physical action
that will control a process.

External Disturbances.An external disturbancés any effect that is unmeasured or unaccounted for
by the controlle

Time Constants.The time constanbf a sensor or process is a quantity that describes the dynamic
response of theadlice or system. Often the time constant is related to the mass of an object or other
dynamic éfect in the process-or example, a temperature sensor mayeha protecéve sheath around
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it that must first bevarmed before the sensegisters a change of temperatuFene constant can range
from seconds to hours.

Dead Time. The dead timeor lag time of a process is the time between the change of a process and
the time this change é&ves at the sensdl'he delay time is not related to the time constant of the senso
although the #ects of the wo are simila Large dead times must be properly treated by the control
system to pvent unstable control.

Hysteresis. Hysteesis is a characteristic response of positioning actuators that result$fereidk
positions depending on whether the control signal is increasing or decreasing.

Dead Band.The dead bandbf a process is that range of the proocedse in which no control action
is teken A dead band is usually used iwa-position control to mvent “chattering” or in split-range
systems to mvent sequential control loops frofighting each othe

Control Point. The contol pointis the actual, measuredlue of a process (i.e., the set point + steady-
state dfset + compensation).

Direct/Reverse Action.A direct-actingprocess will increase ivalue as the signal from the controller
increasesA reverse-actingprocess will decrease iralue as the signal from the controller increases.

Stability. The stability of a feedback control loop is an indication ofwell the process is controlled
or, alternaively, how controllable the process.iBhe stability is determined bywa number of criteria,
including overshoot, settling time, correction ofviaitions due teexternal disturbances, etc.

Electric Control. Electric contol is a method of usingv voltages (typicail, 24 VAC) or linevoltages
(110 VAC) to measure&alues and féect changes in controlledariables.

Electronic Control. Electronic contols use solid-state, electronic components used for measurement
and amplification of measured signals and the generation of proportional control signals.

Pneumatic Contol. Pneumatic combls use compressed air as the medium for measuring and controlling
processes.

Open-Loop SystemsAn open-loop systens one in which there is no feedbagkwhole-house attic
fan in anexample. It will continue to rumven though the house magvke already cooledft Also,
timed on/df devices are open loops.

Examples

Direct-Acting Feedback Contol. A classic controkxample is a reseoir in which the fluid must be
maintained at a constaravel. Figure 6.2.2hows this process schematigallhe key features of this
direct-acting system are labelé&tle will refer to the control action of this system shortly aftdiniey
some terms.

Cascaded (Maste-Slave) Contol Loops. If a process consists o&weral subprocesses, each with a
relaively different transfer function, it is often useful to use cascaded control fFeggample, consider

a building housing a mariacturing line in which 100% outside air is uded which must also dve
very strict control of room air temperatufidie room temperature is controlled by changing the position
of avalve on a coil at the mainraiandling unit that supplies the zofigpically, the time constant of
the coil will be much smaller than the time constant of the rédosingle feedback loowould probably
result in poor control since there is so much dead tim@vied with both processeghe solution is to
use wo controllers: the first (the master) compares the room temperature with the thermostat setting
and sends a signal to the second (thee}lthat uses that signal asasn set point for controlling the
coil valve. The shve controller measures the output of the coil, not the temperature of theTieem
controller gain on the master can be seiter than that of the ale to peventexcessve cycling.
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set point

gain

external disturbance

FIGURE 6.2.2 Example of a controlled process.

Sequential Contol Loops. Sometimes control action is needed at more than one point in a process.
An example of this is an ehandling unit that contains both heating and cooling coils in order to maintain
a fixed outlet air temperature no matter the seabgpically, asequentialor split-rangg system in an
air-handling unit will lave three temperature ranges of operationfiteefor heating mode, the last for
cooling mode, and a middle dead-baegian where neither the cooling nor heating coils are operating.
Most sequential loops are simphyd different control loops acting from the same senBbe term
sequentiakefers to thdact that in most of these systems the components are in series in theeaderor
stream.

Combined Feed+orward/Feedback Loops.As pointed out earlie feed-foward loops can be used
when the #ects of anexternal disturbance on a system arevan. An example of this is outside air
temperature reset control used to modify supply air temperaftinescontrol loop contains both a
dischage air temperature sensor €tprimary sensor) and an outdoor air temperature sensor (the
compensatiosensor)The designer shouldahe some idea about the influence of the outside temperature
on the heating load, and can then assigauhority to the éfect of the outside air temperature on the
controller set pointAs the outdoor temperature increases, the control point decreases, anersace

as slown in Figure 6.2.3

140°F
HVAC PLANT
WATER
TEMPERATURE
55°F
0°F 85°F
OUTDOOR AIR TEMPERATURE

FIGURE 6.2.3 Example of the féect of compensation control.

Predictive Contol. Predictive comtol uses a model of the process to predict what the proedss
will be at some point in the future based upon the current and past conditiensontroller then
specifies a control action to be&kéa at the present that will reduce the future process erro

Adaptive Contol. Adaptive conbllers modify theirgains dynamically so to adapt to current process
conditions.

Supevisory Controllers. Supervisory combllers are used to @ayern the operation of an entire plant
and/or control systenThese may be referred to dsstributed comtol systemgDCSs) which can be
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used to gvern the control of indidual feedback loops and can also be used to ensure some kind of

optimal performance of the entire plamte controller willvary setpoints and operating modes in an
attempt to minimize a cost functiof basic diagram of a supervisory controllerFigure 6.2.4

SUPERVISORY
CONTROLLER

THINGS WE CAN
CONTROL
(e.g., set points)
PROCESS ‘—-‘ oo
THINGS WE PO j ON
NOT CONTROL
(e.g., weather, loads)

FIGURE 6.2.4 Typical supervisory controlie
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6.3 Control System Analysis

Peter S. Curtiss

The Linear Process Approximation

To design controllers it is necessary wénboth a dynamic process and control system representation.
This section describes they points of the most common such representation, that of linear processes
and their controlsA process is basically a collection of mechanical equipment in which an input is
changed or transformed sonmehto produce an output. Mg processes will be at nesteady-state,
while others may be in a more or less constant state of chalegasebuilding control systems as an
illustration.

Steady-State Operation

The true response of a seemingly simple process can tagtjmuite comk. It is very difficult to

identify and quantifyevery single input because of the stochastic nature of lifevetrer, practically
any process can be approximated by an equation tkes fato account the kwn inputvariables and
produces a reasonabl&dhess to the actual process output.

It is covenient to use ffierential equations to describe the &gbr of processedror this reason,
we will denote the “compkity” of the function by the number of terms in the correspondiffgreintial
equation (i.e., therder or degee of the dfferential equation). In a linear system analysis, we usually
consider a step change in the control signal and wbsbe responsé he following descriptions will
assume a step input to the function, aswshin Figure 6.3.1 Note that a step change such as this is
usually unlkely in most fields of control outside of electronic systemsesead then can only be applied
to a digitalevent, such as aogwer supply being switched on or a relay beingrgimed. Zero-order
system output has a one-to-one correspondence to the input,

1

control
signal

u(t)

— time

FIGURE 6.3.1 Step change in control signal.

y(t) = a, [(t)

First-order functions will produce a timarying output with a step change as input,

M+, () =, a0
and highe-order functions will produce more comaploutputs.

The function that relates the proceafue to the controller input is callecettransfer functiorof the
processThe time between the application of the step chaggand the time at which the fuktent
of the change in the procesgsue has been aehied is called tatransfer periodA related phenomenon
is process dead time. If there is #fisient physical distance between the process output and the sensor
assigned to measuring it, then one oserdead time during which the process output is fiettad
by the control signal (seeigure 6.3.2. The process gair(or static gain) is the ratio of the percentage
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process
output

«—> effective dead time
A

FIGURE 6.3.2 Effective dead time of a process subjected to a step change in controlled signal.

change of the process output to the corresponding percentage change of the control sigragrior a g
responsefor example, the gain can be pdgé (as in a heating coil) olegaive (as in a cooling coil).

Dynamic Response

In practice, there argery few processes controlled in a stepwiashion. Usuajl, the control signal is
constantly modulating much theay that one nmiees small changes to the steering wheel of a car when
driving down the highvay. We row consider the dynamic process efdl control inbuckets filled with
water (sedrigure 6.3.3. Imagine that theelel of water in thebucket on the left of Figure 6.3.3 is the
control signal and theatel of water in thebucket on the right is the procesalue. It is dvious that a
step change in the control signal will bring aboftitrst-order response of the procestue.

input signal

[]|«

process

—

L

FIGURE 6.3.3 Connected water containers useddoample of dynamic response.

Suppose, twever, that a periodic signal is applied to tkeedl of thebucket on the left. If the frequen
of the signal is small enough, we see a response irtbkeith thebucket on the right thataries as a
function of this diving force,but with a delay and a decrease in the amplitude.

Here thedynamic pocess gains less than oneven though the static procegain is one There is
no dead time in this process; as soon as sginko increase the control signal the processe will
also kegin to increaseThe dynamic proceggin, therefore, can be defined similarly to that of the static
gain — it is the ratio of the amplitude of theot signals, comparable with the normalized ranges used
in the static gain definition.

The dynamicgain, as its name suggests, is truly dynamic. It will change not only according to the
transfer functionput also to the frequey of the control signalAs the frequecy increases, the output
will lag evenfarther behind the input and tgain will continue to decreasat one point, the frequexn
may beexactly right to cancelry past &ects of the input signal (i.e., the phase shift i6°L&nd the
dynamic gain will approach zero. If the frequgmises furthe the process output may decrease as the
control signal increases (this can easily be the case witliiding cooling or heating coil due to the
mass &ects) and the dynamigain will be regaive!

At this point it is covenient to define a feedback loop mathematicallgeneral feedback loop is
shown in Figure 6.3.4The controlle, actuato, and processaue all been combined into édorward
transfer functior(or open-loop transfer functi) G and the sensor and dead tinaehall been combined
into thefeedback pathransfer functiorH. The overal closed-loop transfer functiois defined as

C

c__¢c
R 1+GMH
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FIGURE 6.3.4 Generalized feedback loop.

The right-hand side of this equation is usually a ratio of two polynomials when using Laplace or
transforms. The roots of the numerator are calledéhesof the transfer function and the roots of the
denominator are called thples(Shinners, 1978).

The denominator of the closed loop transfer function@ +H is called thecharacteristic function.
If we set the characteristic function equal to zero we havehhecteristic equation

1+G-H=0
The characteristic equation can be used to assess process control stability during system design.

Representation of Processes in t, s, and z Domains

We cannot hope to ever know how a process truly behaves. The world is an inherently stochastic place
and any model of a system is going to approximate at best. Nonetheless, we will need to choose some
kind of representation in order to perform any useful analysis.

This section will consider three different domains: the continuous-time domain, the frequency domain,
and the discrete-time domain. The frequency domain is useful for certain aspects of controller design,
whereas the discrete-time domain is used in digital controllers.

Continuous-Time-Domain Representation of a Process
In the time domain we represent a process by a differential equation, such as

d"y d™ty d"™%y dy d™u d™u du
+ + +...+a . Y+ay=h + +---+b_ . —+b.u
dtn al dtn—l a2 dtn—z an—l dt any 0 dtm bl dtm—l m-1 dt m

This is just a generalization of the first-order system equation described earlier.

Frequency-Domain Representation of a Process — Laplace Transforms

The solution of higher-order system models, closed-form solution is difficult in the time domain. For
this reason, process transfer functions are often written using Laplace transforms. A Laplace transform
is a mapping of a continuous-time function to the frequency domain and is defined as

F(9) = ij(t)e’s dt

Laplace transforms are treated in Section 19. This formulation allows us to greatly simplify problems
involving ordinary differential equations that describe the behavior of systems. A transformed differential
equation becomes purely algebraic and can be easily manipulated and solved. These solutions are not
of great interest in themselves in modern control system design but the transformed system (+) controller
differential equation is very useful in assessing control stability. This is the single key aspect of Laplace
transforms that is of most interest. Of course, it is possible just to solve the governing differential equation
for the system directly and explore stability in that fashion.
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The Laplace transform of theguious diferential equation is
S"Y(s) + AS"Y(s) +... + A _,SY(s) + A Y(s) = B,s"U(s) + Bs"U(s) +... + B, sU(s) + BU(9)
This equation can bewritten as
Y(9)[fs" + AS™ +..+ A s+A ) =U(S) [[Bs" + BS™ +...+ B s+ B)
so that the transfer function is found from

Y(s) _s"+Bs"t+...+B S+ A,
U(s) S"+AS™+...+A_ S+A

This is theexpression that is used for stability studies.

Discrete-Time-Domain Rep esentation of a PocessA process in the discrete time domain is described
(Racke and Isermann, 1989) by

y(k) = ay(k-1) +a,y(k-2)+a,y(k-3) +... + bu(k = 1) + bu(k - 2) + bu(k = 3) +...

This representation is of use when one is designing and analyzing the performance of direct digital
control (DDC) systems. Note that thectorsa andb arenotthe same as for the continuous-time domain
equation. Tk z-transform uses the baefrd shift operator and thereforethtransform of the discrete-

time equation is igen by

y(l— az'-az?-az°+ ) = u(blz’l -b,z? -b,z"° +)
The transfer function canow be found:

y_ bz'-bz?-bz7+..
u 1l-az'-az’-az’+..

z-Transform Details. Because-transforms are important in modern control design and are not treated
elsawhere in this handbook, some basics of their useieea pebw. More and more control applications

are being turnedver to computers and DDC systems. In such systems, the sampling is not continuous,
as required for a Laplace transforime control loop schematic isatin in Figure 6.3.5

FIGURE 6.35 Sampled feedback loop.

It would be prohibively expensve to include avoltmeter or ohnmmeter on each loop; therefore, the
controller empbys what is called aeo-order hold This basically means that thalue read by the
controller is “latched” until the ext value is read inThis discrete \aw of theworld precludes the use
of Laplace transforms for analyses andkemit necessyy therefore, to find some other means of
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simplifying the simulation of processes and controll€éne following indicates briefly bw z-transforms
of controlled processes can beided and bw they are used in a controls application. In the design
section of this chapter we will useetirtransform to assess controller stafilit

Recall that the Laplace transform isven as

#{1(v)} =wa(t)e’s‘ dt

Now suppose wedve a process that is sampled at a discrete, constant timeirftefhe index k will
be used to count the intals,

at timet =0,k =0,
at timet =T, k = 1,
at timet = 2T, k = 2,
at timet = 3T, k = 3,

and so forthThe eqivalent Laplace transform of a process that is sampled at a constara! ifitean
be represented as

0

{f" ()} = Z f(KT)e™

By substituting thdvackwad-shift operatorz for €, we get the definition of thetransform:

0

Z{ (1)} = Z f(kT)Z

Example of Using zTransfer Functions. Suppose wedve acylindrical copper temperature sensor in

a fluid stream with material properties ageg We wish to establish its dynamic characteristics for the
purpose of including it in a controlled process model using both LaplaceteansformsFigure 6.3.6
shows thekey characteristics of the sems®he sensor measures 0.5 cm in diameter and is 2 cm long.
For the purposes of thexample we will assume that the probe is solid capfiee suface area of the
sensor is then

A, =207{0.25 cm)® + (0.5 cm) ({2 cm) = 3.5 cm?
and the mass is
M, = (9 g/om?) (2 cm) fo.25 em)’] = 35 g
The thermal capacitance of the sensor is found from the product of the mass and the hegt capacit
C,=M, ¢, =359M4JgK =14 JK

and the total sfiace heat transfer rate is the product of the area and faeesheat transfer cifieient,
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@

) heat capacity ¢, = 0.4 J/ig-K
fluid flow density p = 9 g/cm®
"""""""""""""""" 4 surface heat transfer coefficient U = 0.005 W/em?®K

FIGURE 6.3.6 Fluid temperature sensor used in example.

UA, = 0.005W/cm? [K (3.5 cm? = 0.018 W/K

Now we can perform an energy balance on the sensor by setting the sum of the energy flow into the
sensor and the energy stored in the sensor equal to zero:

dT,
= +(T,-T,)wA =0

whereTs is the temperature of the sensor dpds the ambient fluid temperature. This relationship is a
nonhomogeneous first-order differential equation:

oI UAL _UAL
¢ C, C

S

Thetime constanbf the sensor is defined as

_Co_ 14JK o
UA 0018 W/K

The differential equation that describes this sensor is

dar, 1. 1

d t©° t1°

This example will find the response of the sensor when the fluid temperature rises lineafl bp30
timet = 0 to timet = 200 seconds and then remains constant. That is, the driving function is

0= e

= t=0.15°C/sect 0<t<200sec
200 sec

T,(t)=30°C t = 200 sec
Assuming an initial condition of, = 0 att = 0, we find that

T,(t) = 0.15t 12 +126°%2*  for t <200 sec

and

T(t)=30-134.2e™""  for t>200sec
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10+

450 500

sl

FIGURE 6.3.7 Time domain solution oéxample.
First line: T = 0.18 — 12 + 12700125 Second lineT = 30 — 134.2¢".

A graph of the entire process (rise time and steady stateyws $hFigure 6.3.7The wo lines intersect
at t = 200 seconds.

Solution of &ample in frequencdomain
This same process can beved using Laplace transforms. First we will&this problem for the first

200 secThe Laplace transform of a ramp function can be found from the tables (see Section 19) to get

_ 1 o015
Ts(s) - T(S+1/T) s2

This can beexpanded by partial fractions to get

T U
s+]/r%

T.(s) = 0.15% + iz +
S
Using the table for thewerse Laplace transformsévgs
T.(t) = 0.15[—r +t+ re““]
Substitutingt = 80,

T,(t) = -12+ 0.15t + 1270
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This isexactly the same as the time-domain solutioovabFor the steady-state iging force of T, =
30 fort > 200 sec we also find the same result.
Solution of gample in the discrete-time domain
We consider the same problem in the discrete-time domain that a DDC system might use. Recall that
the transfer function in the frequsndomainwas gven by

1
1

T(2_1. =z
@)1 e

whereT is the sampling frequen in secondsThe diving functionT, is a dven as

T,(t)=at
wher a is the rate of change of the temperature aweal0.15C/sec). Note that to put this into the
discrete-time domain we must correct this rate by the samplingahter

T.(2 =0.150T E)LZ
(z-1)
usinga = (0.15- T) °C/sampling intesal.
We can ow express the response of the process as

0 Tz O

(0)=10 2 Heism) EEL E

since thez operator acts on the sensed temperature by performing wadrdckhift of the time inek.
In otherwords, the pavious equation can bewritten as

tk—@+émjgm+@ﬁ2€mﬁgi—€mW}%:9%5354

S,
So the current temperature is determined by teéiqurs three temperature measurements,

gk42mmﬁgm—@+kmﬁgm+€Wgﬂ+%ﬁnﬁﬂ for KT <200 sec

Regarding the last term in the equation, recall thatttierse transformfaz® is gven as 1 wheh=k,

and zero otherwisd his term povides the initial “jump-start” of the progressidrable 6.3.1shows the

first few time steps for the-domain solution using time steps of 0.1 and 1.0 seconds. In general, the
accuray of thezzdomain solution increases as the time stegvgrsmalle. The solution forkT > 200
seconds is similar to that for the Laplace transforms.
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TABLE 6.3.1 Initia| Time Stepsfor z-Domain Solution of Example

Initial 10 Stepsfor T = 0.1 sec Initial 10 Stepsfor T = 1.0 sec
k Tlme Tsexact Ts,ztransform k Tlme Tsexact Ts,ztransform
0 0.00 0.00000 0.00000 0 0.00 0.0000 0.0000
1 010 0.00001 0.00002 1 1.00 0.0009 0.0019
2 020 0.00004 0.00006 2 2.00 0.0037 0.0056
3 0.30 0.00008 0.00011 3 3.00 0.0083 0.0112
4 040 0.00015 0.00019 4 4.00 0.0148 0.0185
5 050 0.00023 0.00028 5 5.00 0.0230 0.0277
6 0.60 0.00034 0.00039 6 6.00 0.0329 0.0386
7 070 0.00046 0.00052 7 7.00 0.0446 0.0512
8 0.80 0.00060 0.00067 8 8.00 0.0580 0.0656
9 0.90 0.00076 0.00084 9 9.00 0.0732 0.0816
10 1.00 0.00093 0.00103 10 10.00 0.0900 0.0994

The rext three figures giw the dfect of using diferent time intevals in thez-domain solutionThe
values sbwn here are for thexample outlined in this section. If one could use dmit@simally small
time step, the-domain solutionwould match thexact solution. Of course, thisould imply a much
larger computationalféort to simulateeven a small portion of the process. In practice, a timeviter
will be chosen that reflects a compromise between agcarad speed of calculation.

Each graph gws two lines, one for thexact solution of the first 200 sec of teeample and the
other for thez-domain solutionFigures 6.3.80 6.3.10give thezzdomain solution using time intels
of 0.1, 1.0 and 10.0 seconds, respety. Notice that there is not muchffdirence between the firsta
graphseven though there is an order of magnitudéedence between the time intats usedThe latter
two graphs stw significant diferences.

30 +
------ Z TRANSFORM
9s | EXACT SOLUTION
w 207
®©
-]
H
£ 151
-
oy 4
s 4
V] + + + i
0 50 100 150 200

TIME {seconds]

FIGURE 6.3.8 Result ofz-transform wherT = 0.1 sec.
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FIGURE 6.3.10 Results ofztransform whernl = 10.0 sec.
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6.4 Control System Design and Application

Peter S. Curtiss

Controllers

Controllers are akin to processes in thaythave gains and transfer functions. Generathere is no
dead time in a controller or it is so small as to &gligible.

Steady-State Effects of Controller Gain

Recall that the process stagjgin can be wed as the total change in the procesise due to a 100%
change in the controller outpyt proportional controller actské a multiplier betweenreerror signal

and this procesgain. Under stable conditions, therefore, there must be some kind of error toryield a
controller outputThis is called the steady-state or stafifset

Dynamic Effects of Controller Gain

Ideally, a controllergain value is chosen that compensates for the dynaaiit of the process under
normal operating condition¥he total loop dynamigain can be considered as the product of the process,
feedback, and controllgrains. If the total dynamic loogain is one, the process will oscillate continu-
ously at the natural frequenof the loop with no change in amplitude of the prosedse. If the loop
gain is greater than one, the amplitude will increase with gadé until the limits of the controller or
process are reached or until sometHais. If the dynamic loogain is less than one, the process will
eventually settle dwn to stable control.

Controller Bias

The controller bias is a constarffset applied to the controller output. It is the output of the controller
if the error is zero,

u=KLke+M

where M is the biasThis is useful for processes that become nonlinear axtremes or for process
in which the normal operating conditions are at a nonzero controller output.

PID Controllers

Many mechanical systems are controlled by proportionafjiat-deivative (PID) controllersThere are
many permutations of such controllers which use only certain portions of the PID controllers or use
variations of this kind of controlieln this section we consider thisry common type of controlie

Proportional Control

Proportional control results in action that is linear with the error (recall the effinitide in Figure

6.2.1 The proportional ternk, - & has the greatesffect when the procesalue isfar from the desired
setpoint. Hwever, very lage values ofK, will tend to force the system into oscillatory respoiide
proportionalgain dfect of the controller goes to zero as the process approaches set point. Purely
proportional control should therefore only be used when

* The time constant of the process is small and henoge dantrollergain can be used;
* The process load changes are reddy small so that the steady-staféset is limited;
* The steady-stateffget is within an acceptable range.

Integral Control

Integral control mies a process adjustment based on the cuivellatra, not its currenvalue The
integral termK; is the reciprocal of the reset tinie, of the systemThe reset time is the duration of
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each error-summing cycle. Integral control can cancel any steady-state offsets that would occur when
using purely proportional control. This is sometimes caksgtcontrol.
Derivative Control

Derivative control makes a process adjustment based on the current rate of change of the process control
error. Derivative control is typically used in cases where there is a large time lag between the controlled
device and the sensor used for the feedback. This term has the overall effect of preventing the actuator
signal from going too far in one direction or another, and can be used to limit excessive overshoot.

PID Controller in Time Domain

The PID controller can be represented in a variety of ways. In the time domain, the output of the
controller is given by

u(t) = Kp%(t) + KiJ;t gt) dt + K, dz(tt)a

PID Controller in the s Domain

It is relatively straightforward to derive the Laplace transform of the time-domain PID equation. The
transfer function of the controller is

K K
VO G KK
E(s) 0 s 0

€«

This controller transfer function can be multiplied by the process transfer function to yield the overall
forward transfer functiois of ans-domain process model. The criteria described earlier can then be
used to assess overall system stability.

PID Controller in the z Domain

Process data are measured discretely at time intekvabBnd the associated PID controller can be
represented by

= . + K. . i)+ MD
u(k) Kpée(k) KIAtZe() K, E

The change of the output from one time step to the next is givefkbyu(k — 1), so the PIRlifference
equationis

u(k) - u(k -1) = Kp%+%ge(k) + F ¢ —1—2%@3&—1% @%ge(k—Z)é

and can be simplified as

u(k) - U(k - l) = %e(k) + qle(k - 1) + qze(k - 2)

where
— Kd — Kd — Kd
R I L P e IR v
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Note that we can write this as

u(l— z‘l) = e(q0 +qz '+ qzz‘z)
The zdomain transfer function of the PID controller is théveg as

U2 _ g +z +q,z7 _ q2° +qz+q,
&2) 1-z* -z

Controller Performance Criteria and Stability

Performance Indexes

Obviously, in feedback loops we wish to reduce the process error quickly ang Stabtontrol systems
engineer can useftirent cost functions in the design of i&e; controller depending on the criteria
for the controlled process. Some of these cost functiansefformance indexgsre listed here:

ISE Integral of the square of the error J' e

ITSE Integral of the time and the square of the error J'e2
2

ISTAE Integral of the square of the time and the absolute error J' €]

2
ISTSE Integral of the square of the time and the square of the errcf e’

These indxes are readily calculated with DDC systems and can be used to compaffedtse of
different controller settinggaains, andeven control methods.

Stability

Stability in a feedback loop means that the feedback loop will tendt@rge on avalue as opposed
to exhibiting steady-state oscillations dvefgence. Recall that the closed-loop transfer functioiveng
by

c_ ¢
R 1+GH

and that the denominatd +GH, when equated to zero, is called the characteristic equaipically,

this equation will be a polynomiah s or z depending on the method of analysis of the feedback loop.
Two necessary conditions for stability are that allvers ofs must be present in the characteristic
equation from zero to the highest order and that affica@nts in the characteristic equation muateh

the same sign. Note that the process may still be unstaiewhen these conditions are Jadid.

Roots of the Characteristic Equatiofhe roots of the characteristic equation play an important role in
determining the stability of a proceShese roots can be real and/or imaginary and can be plotted as
shown in Figure 6.4.1In thes-domain, if all the roots are in the left half-plane (i.e., to the left of the
imaginary axis), then the feedback loop is guaranteed to be asymptotically stable andverfjecto

a single outputalue. If one or more roots are in the right half-plane, then the process is unstable. If
one or more roots lie on the imaginary axis and none are in the right half-plane, then the process is
considered to be mginally stable. In th z-domain, if all the roots lie within the unit circle about the
origin then the feedback loop is asymptotically stable and willeege. If one or more roots lie outside
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complex conjugate roots

FIGURE 6.4.1 Placement of roots in the imaginary planeogging unit circle).

the unit circle then the process is unstable. If one or more roots lie on the unit circle and none are outside
the unit circle, then the process isrgiaally stable.

Root locus rample
Consider the feedback looposim in Figure 6.4.2The characteristic equation isvgn by 1 +GH =0 or

s 10

1+ KDs+o(D%+ BH: 0

FIGURE 6.4.2 Simple feedback control loop.

For differentvalues ofK we can plot the roots of this equatidre graph inFigure 6.4.3stows an
example plot when the characteristic equationiveig bys? + (1.25 +K)s + 1.25 = 0 The plot slows
that a system described by this characteristic demonstrates stable response for @gnooéfs0<
K < 10.0.For gains greater than 10, thezdsts at least one root in the right half-plane and the process
is not under stable control.

Note that the root locus plot idnays symmetric about the real axis and that the number of separate
segments of the locus is equal to the number of roots of the characteristic equation (i.e., the number of
poles of the closed-loop transfer function).

Routh-Hurwitz Stability CriteriaThe Routh-Hurwitz method is anbtgar manipulation of the charac-
teristic equation in the frequendomain and is used to assess stabilithe characteristic equation is
given by

a,s"+as" " +...+a,_,s+a, =0

then the Routh-Hurwitz method constructs a table from thficeats as folbws:

s a a a
stoa a g
Sn_z Xl X2 XB
Y Y, Y,
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FIGURE 6.4.3 Root locus of? + (1.25 +K)s + 1.25 = 0.

where
xlzalaz_aoas; X2:a1a4—a0a5; staiae—a0a7.__
a a &
Yl:X1a3_a1X2; Yzleas_alxa_“
X X

and so forth. The number of roots in the right-hand plane afdoenain is equal to the number of sign
changes in the first column, i.e., the column contaiing,, X,, Y;, etc. In other words, if all the
elements in the first column have the same sign, then there are no roots in the right-hand plane and the
process is stably controlled. Also, for special cases of the characteristic equation,

« If the first element of any row is zero but the remaining elements are not, then use some small
valuee and interpret the final results as-» O.

« If one of the rows before the final row is entirely zeros, then (1) there is at least one pair of real
roots of equal magnitude but opposite signs, or (2) there is at least one pair of imaginary roots
that lie on the imaginary axis, or (3) there are complex roots symmetric about the origin.

Field Commissioning — Installation, Calibration, Maintenance

Tuning of Feedback Loops

Thetuning of a controller involves finding controller gains that will ensure at least a critically damped
response of the process to a change in set point or process disturbance. A good starting point for PID
constants is that derived during the design phase by the stability assessment approaches described above.
However, real processes do not necessarily behave as their models would suggest and actual field tuning
of controls is needed during the system-commissioning process.

Pole-Zero CancellationOne method of obtaining the desired critically damped response of a process

is to determine the closed-loop transfer function in the form
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(s+A)(s+A)-.(s+A)
(s+ Bl)(s+ Bz)...(s+ Bn)

C_
R

The codficients A andB will depend on both the process characteristics and the congaiter The
objectve of pole-zero cancellation is fimd values for the controllggains that will set some numerator
codficients equal to those in the denomimaéfectively canceling term#\s can be imagined owever,
this can be aery dificult exercise, particularly whemworking with compéx roots of the equations.
This method can only be used witbry simple system models.

Reaction Curv@echniquesOften it is advisable to test a feedbackddwositu Several techniquesdve
been @veloped that atiw for the deivation of “good” PID constants for awgn open-loop response.
Consider the process responsevahin Figure 6.4.4vherel, is the change of process outphtis the
change of controlle L is the time between change and intersectiod,Tais the time betweeroler
intersection and upper intersectidde can define the faling variables A = A /A, B =T/L, andR =

L/T. Thesevalues can be used with the equationsgig n Table 6.4.1to estimate “decent” control
constantsThe users of these constants shouldwbere, lowever, that these constants are based on the
typical response of second-order systems and may oagtiprgoodvalues for all processes.

107

100 + - -
e 4
process
80 + output
70 4
a0 +
504
40
20 4
20 4
10
04 o =
-10 + -+ t + + + t t + + 1
-20 0 2 « & 80 100 120 140 160 180 200

FIGURE 6.4.4 Reaction cwe components.

Ultimate Frequeng. The ultimate frequeay test nvolves increasing the proportiongdin of a process
until it begins steady-state oscillation:K; is defined as the proportiongdin that results in steady
oscillations of the controlled systemdafi is the period of the oscillationEhe desired controllegains
are dven in Table 6.4.2Note that the use of the ultimate period test is lvedys easy to do in practice
and may be prohibited in certain cases by the a process operations manage
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TABLE 6.4.1 Equations for Finding PID Constants Using the Zeigler-Nichols and Cohen

Mechanical System Controls

and Coon Reaction Curve Tests

Zeigler-Nichols

Cohen and Coon

K

K

Controller P _d p Dd
Components K, K Kp K, K Ko
P AB — — ABEHBD _ _
30
P+l 0.9B 3.3 — ABE"“ RO 30+3R _
120 9+20R
P+D — — — ABSL25+BD — L 5-2R
60 22+3R
P+1+D 1.2B 2L 0.5 ABEL33+BD 32+6R 4
40 13+8R 11+2R
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TABLE 6.4.2 Equations for Estimating PID constants Using

the Ultimate Frequency Test

Controller K K, Ky
Components P ?. K,
P *
O.5Kp — —
P+l 0.45K, 0.8T —
P+1+D 06K, 0.5T 0.1257

6-35



6-36 Section 6

6.5 Advanced Control Topics

Peter S. Curtiss, Jan Kreider, Ronald M. Nelson, and Shou-Heng Huang

Neural Network-Based Predictive/Adaptive Controllers

Neural netvorks are pwerful modeling tools used for predicting nonlinear dtr of processes and
require a minimum of kowledge about thehysical systemrivolved This approach can be used to
predict the betvior of a process and can calculate the futialee of the procesariables The dfects

of current modifications to the futuralue of the controlled process can be easily dfiedtand used
to obtain the desired process response.

Overview of Neural Networks

The artificial neural netork attempts to mimic aefv aspects of the beahor of biological neural
netvorks. Inputs to a biological nex cell are carried along the dendrites of that ¢akse inputs come
from the positve impulse signals of other ceblat may be coverted to egaive signals by the chemical
interactions at the synapse between the .8lllof the inputs are then carried to the soma wheeg th
add or subtract from thaverall potential dference between the interior of the soma and the surrounding
fluid. Once the cell potential risesae a certainevel, the cell “fires” and sends signals to other cells
along its axon.

The artificial cell beves in much the samgay, except that the output signal is analog instead of
digital. Signals from sending cells are passed along to &irgeell through a series of connections.
Each connection has an associated weighfi@ator that acts as a multiplier on the signal from the
sending cellAll the inputs to a cell are summed (along with a cell bias, if included) and the resulting
value is used to generate the output of theivagcell The output of the cell is referred to as the cell
activationand the function that uses the net input to generate the ¢editmct is called thactivation
function The acivation function can theoretically be afygform, although linear and sigmoidal functions
are frequently usedrigure 6.5.1shows a comparison between a biological cell and aficati cell.

When may different cells are combined together into a richly connectedoneiFigure 6.5.2, the
result can bedwe mathematically ke a nonlinearagression engine capable of mapping inputs to outputs
for compkx relationshipsThe trick is to find a series of weightV that albw the netvork to povide
the desired outputs using sgecinputs.

|
Gl

FIGURE 6.5.1 Biological cell vs. artificial cell.

-— f(Z+B) -

Training Neural Networks
The net input to a cell isiven by
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VECTOR OF INPUTS OUTPUT

Ll

FIGURE 6.5.2 Atrtificial neural network consisting of several layers of mathematical models of biological neurons.

1
NET; — Z Aw;_;
=

wherelgy; is the net input of nodiedue to input from nodesthroughl (as infirst throughlast), A is

the output of cel], and w_; is the weighting factor associated with the connection between the sending
nodej and the receiving node The output dctivation) of celli is then going to be a function of the

net input to the cell. Typically, the sigmoid function is used to relate activation to cell inputs

_ 1
A - 1+ eiINET,I
Practically any function can be used as the activation function of each node; the sigmoid function is
usually chosen because the derivative, used during the training process, is easy to calculate. Traditional
training of neural networks seeks to minimize the error function

whereN; is the number of input/output pairs of dath,is the number of outputs of the network, and

t,; is the desiredtérged output value for a given set of inputs. This error function is minimized by
adjusting the values of the weights proportionally to the negative of the derivative of the error with
respect to each weight,

wheree¢ is thelearning rate of the network. In a multilayered network the training is initiated by
stimulating the network with a specific vector of inputs. The outputs of all the cells are then calculated
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in order, starting with the input layer and ending with the output layer. The output is then compared
with the known target output value, and any errors are compensated for by adjusting the weights from
the output layer back toward the input layer. This method of training is, therefore. lidleg@ropa-

gation With such a method, the previous equationarcan be rewritten as

Aw,; ; = -edA
whered, represents the effect of a change in the net input tq oaellthe output of cell. For cells in
the output layer,

5 = (ti - A) f'(lNET,i)
wheref' is the derivative of the sigmoid activation function. For nodes in the hidden layers,

1

5 = f’(INH’i)JZ(éiWM)

The productA is something called theeight-error derivativf WED). To prevent excessive oscillation
of the weights during training, the change of weights can be restricted according to

Aw(k) = e (WED + p [Aw(k - 1)

wherep is themomentunof the network. Finally, to gradually reduce the rate at which the weights
change, the learning ratecan be made subject to exponential decay during the training process. This
is sometimes callegimulated annealing

Bias nodesare like stand-alone cells that connect to each “normal” cell of the network. The output
activation of each bias node is always unity and the “weight” connecting the bias node to the normal
cell acts as a threshold function that suppresses or augments the output of the cell.

Using Networks for Controlling Feedback Loop Processes

Neural networks offer the potential for and have demonstrated improved control of processes through
predictive techniques. The concept is fairly simple: train a network to predict the dynamic behavior of
a process and then use these predictions to modify the controller output to place the process at a desired
set pointR(t) at some time in the future. Initial results from computer simulations of such a controller
are presented in Curtiss et al. (1993 a,b,c). Anderson (1989) described a computer simulation in which
a network was trained to recognize the dynamic properties of an inverted pendulum (e.g., a broom
balanced on an open palm). A control system was developed in which the angle and position of the
pendulum were used to move the supporting base in order to maintain the pendulum upright. A neural
network-based predictive controller is outlined in the classic discussion by Nguyen and Widrow (1989)
on the “truck backer-upper” problem in which a tractor-trailer is backed into position at a loading dock.

Properly tuned fixed-gain controllers will usually work over a relatively wide range of process
operation provided that the external perturbations and influences are small or time invariant. With
nonlinear processes, however, a conventional control algorithm can lead to unstable control if the gains
were chosen for a range different from the current operating conditions.

Architecture of the Network

With the neural network approach it is possible to overcome these problems by using as many additional
salient inputs (thauxiliary inputs) as necessary and by incorporating an inherently nonlinear model to

accomplish the control objectives. The network is trained using examples of the time-dependent rela-
tionship between a value of the feedback and previous values of the feedback, the controller output and
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the auxiliary inputsAn example of the netork architecture required for this isim in Figure 6.5.3

In practice there does not need to be a limit on the numberdbps measurements ofiyaof the
inputs, although the final size of thewetk and the corresponding training time and memory require-
ments need to bekean into consideration.

HISTORY OF PAST HISTORY OF PAST  HISTORY OF AUX
CONTROL OUTPUT PROCESS VALUES CHANNEL VALUES

© HIDDEN LAYERS
o

T’ROCESS AT TIME k+1

FIGURE 6.5.3 Network used for process prediction.

The newvork, once trained, can predict the future feedbadie for ay controller outputThe trick
is to find the controller output that causes the future proea@se to match the set poirkhis is
accomplished by finding the deaive of the future error with respect to the current controller signal.
Starting with the current process conditions, the feedballe is predicted at each time step into the
future over a preset time wirov (). During each step of the prediction tedues for the controller
output and auxiliary inputs are held constdititis simulation is performed twice: tffiest time with a
small increase in the controller output and the second time with a small deGlgasalows for the
calculation of the change of the future proceslsie (and hence the change of the future error) as a
function of the change in the current controller outpbe controller output is then mdidid by

0E, (t)
AU(t) - Gnet EEf (t) 6U(t)
whetre E;is the future error ahG,, is the nawork controllergain. For a multiple-output controltethe
additional outputs are simply added as more outputs of therieand the future predictions repeated
several times to find the correct partial datives.

Many differentvariations on this theme are possible g@ample, using the sum of the absolaéies
of all the errorsover the prediction winolv (or the sum of the square of the errors, etc.) instead of
simply the future erno Compute-simulated results of such tests arevited by Curtiss et al. (1993).

Estimating the Size of thedlictionTime Window. It is possible to use the meirk model to determine

the size of the time wiralv by estimating the amount of time required for the process to reach some
future steady state after a simulated change in the controller octpetample of such an open-loop
response it is shwn in Figure 6.5.5 Here the netork is simulating the response of everse-acting
process after a decrease in actuator position at time .giep 70% (In 2) of total rise time is aehed

after 15 time stepdhis kind of calculation can be performed during the control sequence and should
indicate the proper time wiod size.
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FIGURE 6.5.4 Schematic of procedure for determining future prosedse and erno
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FIGURE 6.5.5 Example of computesimulated process step change (used to determine size of timeamyind

Example of PID vs. Network Controller

Figure 6.5.6hows anexample of a process under PID control that demonstrates nonlineariffeegrdi
ranges of actuator positiofigure 6.5.7stows the same process under thiuience of a predinte
neural nework controller that had been trained on the process. Note that therkdtased controller
does not sbw the same problems of unstable control in certain actuator rafgesize of the time
window (15 time stepsyvas determined using the method discussed in #ops section

Using Networks as Supervisory Controllers

The pevious section discussed the use of neuraloikds to minimize a predicted error of a feedback-
loop process. It is possible to apply a similar methodology for supervisory plant control to optimize the
process according to some cost functdmetwork is first trained to predict the cost function under a
wide range of operating conditiarihis netvork is then used to predict what will happen witffedent
control straggies Figure 6.5.8 stows a schematic of this techniquhe left side of the figure etvs
the training mode, where the netk is attempting to associate tharious plant inputs with the cost
function output There can be multiple inputs, including uncontrollaideiables (e.g., ambient condi-
tions, plant loads, etc.) and controlieatiables (i.e., th@arious process set points.)

Once the netork is sificiently trained, it is used tbnd values for the set points undewyaset of
uncontrolledvariables The technique for doing so is similar to the back-pgapan training technique
of the netwvork. The inputs corresponding to the controllatiables are replaced withirtual nodes
whose outputs ardways uniy. These nodes are connected to the predictevanktthrough adjustable
weights The optimization occurs bfinding values for these weights thata¥ the model to predict a
desired outpufThese weights can be found through aumber of search methods, including the gradient
descent technique used in back-pggieon training. In this case, the predictorwatk is “trained”
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FIGURE 6.5.6 Example of computer simulation using a PID controller.
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FIGURE 6.5.7 Example of computer simulation using a neural network controller.

normally, except that all weights in the network are static except those connected to the virtual nodes.
Once weights have been found that produce the desired output, the set points can be found from direct
interpretation of these weights. Constraints can be imposed on the weights either through physical
limitations (e.g., freezing points) or from predictions from local-loop neural network controllers.

Fuzzy Logic Controllers

Fuzzy logic controllers (FLC) use conditional relationships to analyze one or more inputs. That is, the
inputs are subject to a seriedfof.thenqueries to produce some intermediate values. An example would
be something like a simple cruise control on an automobile:

« If vehicle speed = much lower than set pdimenneed to increase speed = large
« If vehicle speed = slightly lower than set pothgnneed to increase speed = small

These intermediate values are then used to determine the actual change of speed in the car:

« If need to increase speed = larenincrease of throttle position = 10%
« If need to increase speed = smidgnincrease of throttle position = 3%
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FIGURE 6.5.8 Using network model to optimize process control.

In fuzzy control, the satisfaction of a particullastatement may not lead to or be restricted by a true

or false response. A range of weighting coefficients is assigned to a particular conditional, with the
coefficients generally decreasing as the certainty of a specific condition decreases. In the example above,
“need to increase speed = large” may be assigned a certainty of 1 when the speed of the vehicle is less
than 50% of the desired speed of the car. This certainty will decrease as the speed of the car increases,
so that “need to increase speed = large” may be 0 when the speed of the car is greater than 90% of the
desired speed, but the certainty of “need to increase speed = small” will be large. It is possible that for
a given speed of the car, two or more conditions may be satisfied with different magnitudes of certainty.
These conditions can then be applied to the output rules along with their respective certainties to
determine the actual increase (or decrease) in the controller output. When the speed of the car is below
the desired speed, the initial rules may yield, for example,

* Need to increase speed = large with certainty = 0.3
* Need to increase speed = small with certainty = 0.7

the actual output would then be
« Increase of throttle position = (0:8310% + 0.7x 3%)/(0.3 + 0.7) = 5.1%

The following section formalizes some of these ideas and includes a detailed example.
Section 19 Mathematics contains the formalism underlying fuzzy set theory and fuzzy logic. The
reader is referred to that section and the one that follows for the technical basis for FLCs.

Fuzzy Logic Controllers for Mechanical Systems

Introduction

In the last decade, FLCs have been receiving more attention (Leigh and Wetton 1983; Daley and Gill,
1985; Yasunobu and Miyamoto, 1985; Xu, 1989), not only in test cases, but also in real industrial process
control applications, including building mechanical systems (Sakai and Ohkusa, 1985; Ono et al., 1989;
Togai and Maski, 1991; Huang and Nelson, 1991; Meijer, 1992). The basic idea of this approach is to
incorporate the experience of human operators in the design of controllers. From a set of linguistic rules
describing operators’ control strategies, a control algorithm can be constructed (Ralston and Ward, 1985).
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Computer simulations arekperiments bve stown that FLCs may dve better performance than those
obtained by coventional controllers. In particulaFLCs appeavery useful when the processes are too
compkx for analysis using ewentional control algorithms or when theailable information is quali-
tative, inexact, or uncertainThus, fuzzy logic control may beewed as a compromise between con-
ventional precise mathematical control and hurkendiecision making, as indicated by Gupta (Gupta
and Tsukamoto1980).

However, fuzzy logic controllers sometiméail to obtain sati&ctory results with the initial rule set
drawn from the operatorexperienceThis is because there still are somiéedeénces between tiveay
a plant is operated by amperienced operator and by an FLC using the rules based directly on his or
herexperience. It is often fficult to express humamxperiencexactly using linguistic rules in a simple
form. Sometimes there is maperience that could be used to construct control rules for FLCs. In these
cases it is necessary to desigavetop, and modify control rules for FLCs to obtain optimal performance.
There lave beendéw discussions about rulexlopment and adjustment segies for FLCs (Sheridah,
1984; Scharf and Mandic, 1988/akileh and Gill, 1988; Ollero aWilliams, 1989).

The Basic Aspects of an FLC

An FLC includes three parts: fufiar, fuzzy reasoning unit, and defuiei. The fuzzifier coverts
ordinary inputs into their fuzzy counterparts, the fuzzy reasoning unit creates fuzzy control signals based
on these fuzzwariables, and the defuzzifier m@rts the fuzzy control signals into the real control
outputs The block diagram of a fuzzy control system isveh in Figure 6.5.9whee e, d, andu are

tracking erro, deivative erra, and output control actipng, d, andl are their fuzzy counterparts,
respedtely; y is the controlled parameter;dinis the set point foy. K, is the scaldactor fore, K, is

the scaldactor ford, andK, is the output gain.

LA A B X T T X X XK X L 2 R ¥ Ry L

|
. 1 FLC _ '
¢ ) °} Furzy u ¥
+ 1 Fuzzifier| | Reasoning [ Defuzzifierf] Koy gv:&c o
. N —] Usit g | System
d, d |

FIGURE 6.5.9 The block diagram of a fuzzy control system.
The control rulesxpressed in natural language axpressed in the fallving form:
IF (e isA) AND (d is B) THEN (u is C)

wher A, B, andC are fuzzy subsets defined on thévarses of discourse ef d, andu, respedtely.
Every rule is interpreted into a fuzzy reasoning matrix:

R=[A@DOB()] 0C(K k=(@N)

where N is the number of rules, the synhlio denotes agggation operatg and the symbad denotes
an align-turning operator (see Section.I4)e general fuzzy relation matrR can be constructed as
the union of the inididual rules:
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This matrix represents the relationship between the fuzzy inputs and the fuzzy controllwetutzy
control output can then be calculated from thewkm fuzzy inpd €andd by

~ ~ ~10

u= [e 0 d] oR

where the symbdi denotes the max-min composition operator (see Section 19).

The input uiverse of discourse for tracking ermor deivative errord is dvided into gveral degrees
connected with a number of fuzzy subsets by membership functions. In thisesartid can each
range from —6 to +6, and l&gtees are used:

-6,-5,-4,-3,-2,-1,0,1,2,3,45,6
Also, ®ven fuzzy subsets are defined as:
NL, NM, NS, zZ, PS, PM, PL.

where the first letters N and P meagaive and posite, the second letters L, M, and S meagéda
middle, and small, and ZZ means zérbese dgrees and fuzzy subsets arevsh in Table 6.5.1which
uses a 1.0-0.8-0.5-0.1 dibtiiion. For example, if e = 3, then its membership in PL is 0.1, its
membership in PM is 0.8, etc.

TABLE 6.5.1 The Membership Function of Input of an FLC

A©,Bd -6 5 4 -3 =2 -1 0 1 2 3 4 5 6

PL 00 00 00 00 00O 0O 0O 00O 00O 01 05 08 10
PM 00 00 00 00 00 00 00O 01 05 08 10 08 05
PS 00 00 0O 00O 0O 01 05 08 10 08 05 01 00
7z 00 00 00 01 05 08 10 08 05 01 00 00 00
NS 00 01 05 08 10 08 05 01 00 00 00 00 00
NM 05 08 10 08 05 01 00 00 00 00 00 00 00
NL 10 08 05 01 00 00 00O 0O 00 00 00 00 o000

A similar analysis is igen to the outputs for the control action indicatedable 6.5.2which uses a
1.0-0.7-0.2 distbution and where the aldmiations mean that the output control actiorevary Strong
(Level 7), STrong (Level 6), SUbstrong (&vel 5), MEdium (level 4), Slightly Small (level 3), SMall
(Level 2), amd Tiny (Level 1).

TABLE 6.5.2 The Membership Function of Output of an FLC

Chp 6 -5 4 3 =2 -1 0 1 2 3 4 5 6

VS (Level7) 00 00 00 00 00 00 00 00 00 00 02 07 10
ST (Level6) 0.0 00 00 00 00 00 00 00 02 07 10 07 02
SU (Level5) 00 00 00 00 00 00 02 07 10 07 02 00 00
ME (Level4) 0.0 00 00 00 02 07 10 07 02 00 00 00 0.0
SS (level3) 00 00 02 07 10 07 02 00 00 00 00 0.0 00
SM(Level2) 02 0.7 10 07 02 00 00 00 00 00 00 0.0 00
Tl (Levell) 10 07 02 00 00 00 00 00 00 00 00 00 00

The fuzzifier caverts ordinary inputs into their fuzzy counterparts. In thisystaduzzy singleton
is used as a fuzzification stegy, which interprets an inpug (or d), into a fuzzyvalug € (or d), with
membership functiony) equal to zeraxcept at the element nearest to the real input, eyher 1.0.
For example, ife = 3.2, the nearest element is 3, then the fuzzy singleton will be

© 1999 by CRC Press LLC



Mechanical System Controls 6-45

d=(0,0,00,0,0,0,0,0, 10,0, 0)

This fuzzy singleton has membership funetio= 1.0 at the point of elemea = 3. The defuzzifier
converts the fuzzy control output created by the rule-based fuzzy reasoning unit into a real control action.
In this stug, weighted combination method is used as defieation straggy, which can bexplained
by the folowing example, if

i=(0,0000,0,0,02 04, 08, 07 05, 0.1)

then

u=[0.2(1) + 0.4(2) + 0.8(3) + 0.7(4) + 0.5(5) + 0.1(6)| [0.2+ 0.4 + 0.8+ 0.7+0.5+0.1] =34

Rule RefinememAn FLC is characterized by a set of linguistic statements which are usually in the form
of if-thenrules The initial set of rules is usually constructed based on the opératpesience, or
sometimes by analyzing the dynamic process of the controlled plant. Both approaches require modifying
the initial set of rules to obtain an optimal rule. 3¢tis is calledrule refinement

Figure 6.5.1Ghows an initial rule set analyzed on a “linguistic plaréie horizontal axigxpresses
the fuzzy subsets defined on thevense of discourse for the tracking er(e), and thevertical axis
expresses the fuzzy subsetdided on the uwerse of discourse for the deative error ). Both tave
seven fuzzy Yalues”: NL, NM, NS, ZZ, PS, PM, PL. On the cross points of these fuaegs there
are output control actiomiels, which are also fuzzy subsetwing ssven “values” from level 1 (Tiny)
to Level 7 (Very Strong).For example, the cross point &= NM andd = PM indicatesu = Level 3.
This corresponds to the rule:

IF (e is NM) AND (d is PM) THEN (u is Level 3)

FIGURE 6.5.10 The initial rule set and performance trajectory on the linguistic plane.

For example, the initial rule set could be based on theMatig control streggies. First, it tries tkkeep
a proportional relationship between the control acfignand the tracking errae). Note that if the
deiivative error ¢l) is ZZ, then the output control actigw) increases from dvel 1 to Level 7 when the
tracking error €) changes from NL to PL. Second, thdéluence of davative error ¢l) is considered
such that, if it is podite, then increase the control actifu) a little bit, and if it is egaive, then
decrease the control actigm). For example, if the tracking erroe) keeps PM, the control action)(
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increases from ével 6 to Level 7 when the dérative error ) is positve, and it decreases fronedel
6 to Level 5 when the derative error ¢) is negaive.
Consider a second-order plant with a transfer function:

1.0
H(s)=———
(s) s> +0.1s+1.0

that is controlled using the initial rule set to respond to a step input for computer simuaiagon
performance trajectory of the FLC isogim by the arows in Figure 6.5.10 and the dynamic process of
the normalized controlled parameter (CP) ienshin Figure 6.5.1where the horizontal axis indicates
the number of sample period (SFhe dynamic process can bwided into tvo stagesAt the first
stage, there is a strong oscillation with a higher frequeand, at the second stage, there is a moderate
swing with a smaller frequen Looking at the performance trajectory in the linguistic plane, we can
see that the stronger oscillation occurs at thecpele (points further from the centefys time increases,
the state raves to the ircycle near the center of the plane and becomes modEénédestows that FLCs
have the desirable property of a structwegiable controlle The rules at the owdycle belong to one
kind of structure for the first stage, and the rules at tlogdle belong to another structure for the second
stage.

Cp

FIGURE 6.5.11 The dynamic process corresponding to Figure 6.5.10.

If the initial rule set does not satisfy a good design for a contrtiilen It can be modified by intivie
reasoningA rule set is often symmetrically positioned about the central point, which is the desired
stable operating point, where the tracking efeprand the devative error () both equal zero and the
control action () is medium When a posive step increase is imposed to the set point, the tracking
error €) has the biggestalue and the dewative error ) is zero at the dginning time (poib A in the
linguistic plane)With the egulating action, the tracking err¢) will decrease, the deative error ¢)
will be negaive, and the performance trajectory will enter into the right-bottom block in the linguistic
plane. So, the rules in this areavé the most importantffect on the bedwior of the first stage of the
dynamic procesS he most important area responsible for theabieh of the second stage is the central
block.

To avoid strong oscillations, it is apparent that the control actions in the right-bottom block should
be decreased’he modified rule set and its simulation of response to a step inputoane ishFigure
6.5.12 The performance trajectosxpressed in the linguistic plane is a spif@ig(re 6.5.12 We can
see that the performance of the control system has beeovedpbut a small oscillation stikxists and
there is a littleovershoot indicated by point C in Figures 6.5.151.13 Once again, the rule set is
modified and the final rule set and its simulation of response to a step inputvemerskigure 6.5.14
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FIGURE 6.5.12 The second rule set on the linguistic plane.
Ccp
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FIGURE 6.5.14 The third rule set on the linguistic plane.

and Figure 6.5.15The final rule setiges good performance with a short rise time anerg small
overshoot and it is considered stigos.

By analyzing the performance trajectory on the linguistic plane, a rule séhedrdt relies havily
on intuifve reasoning when comparing the dynamic process of the controlled parameter for the present
rule set with the desired one.
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CP
2.0 T

FIGURE 6.5.15 The dynamic process corresponding to Figure 6.5.14.

Completeness and Interaction of Rules and Selection of Membership Furitiersecond significant
influence on the bekiior of an FLC is the membership functiofi$ey should be chosen carefully in
the adjustment proces&s mentioned in Section 6.3, the fuzzy subsets, languaigables NL, NM,
NS, ZZ, PS, PM, and PL, arefteed on the urerse discourse of tracking eri@ or deivative error
(d). Some possible membership functions arewshin Figures 6.5.160 6.5.18 The membership
functions should be chosen to keahese languageriables lve suitable overage on the uwverse of
discourseFor the case of Figure 6.5.16, the whole range is ogred by these languageriables.
There are somealues ofe or d, on which the membership functions of all langueggables are zero.
In this case, an empty output control action could be cre@tésl means that the control actions are
lost for those points which are notvered by ay input fuzzy subsetThis is referred as the non-
completeness of control rules. FLCs should satisfy the condition of completeness for their membership
functions The membership function elvn in Figure 6.5.17 cannot be used for &fieaive FLC. In
otherwords, the union of all fuzzy subsg¥s, i = [1,7], should be greater than zero fdreall E, i.e.,

OeOE U_7_1xi (>0

Membership
function
NL NM NS A PS PM PL
\ /\ /\ | /\ /\ /
T T T T 7 T T 7 T T 1 >
-6 -4 -2 0 I 2 4 6 e or d

FIGURE 6.5.16 Non-complete membership function.

On the other hand, there can be interaction among the rulesaveéHap of fuzzy subsets occurs on
the range of the uwerse of discourse. In this case, the membership functemesthe forms sbwn in
Figures 6.5.17 and 6.5.18he interaction tends to smooth out the set of control rules. Consider the
single-input-single-output case for simplicity; the rule set is

IF (e isA) THEN (uis C) i =[1,N]
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FIGURE 6.5.17 Heavy overlap membership function.

Membership
function

FIGURE 6.5.18 Moderate overlap membership function

whereN is the number of rules in the set. These rules are incorporated into a fuzzy relation matrix as
follows:

r={J R=J (a0¢C)

If the fuzzy value of inpué is known ase, the fuzzy output  then can be calculated as follows:

U=€eoR

If & isA, U is expected to b€,. But now the interaction of rules due to overlap results in:
COA°R

The equality is established only when no overlap occurs. This analysis is based on the fuzzy logic scheme
including max-min composition operator. A more-detailed example of the numeric calculation is given
in the appendices to this section.

If the overlap is heavy as shown in Figure 6.5.17, there will be large deformation and the control
rules will lose their original shape. In the limit, as the membership functions become unity for all values,
the output of the FLC will always be the same fuzzy quantity. This means that the fuzzy reasoning
system conveys no valuable information and the FLC has lost its efficacy.

A moderate overlap, shown in Figure 6.5.18, is desirable to allow for reasoning with uncertainty and
the need for completeness of the control rules. How does one determine the “size” of overlap? At present,
we use intuitive judgment to choose membership functions when adjusting an FLC. There appears to
be some latitude in choosing the amount of overlap, on which the performance of an FLC does not
change significantly. The quantitative analysis will be given after further research.
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When we modify the control rules in the linguistic plane,dberlapping membership functions let
the rules near the performance trajectoayehan &ect on the output control actianbhis is because
interactions occur among the neighboring rules.

Scale Factors and Output Gain

The scalefactors,K, andKg, and the outpugain, K,, shown in Figure 6.5.19also fave significant
influence on the bekior of an FLC Their influence is not as complicated as those of rules and
membership functionsThe adjustment for the scalactors and outpugain is comparately simple.

The scaldactorK, relates the actual range of tracking efgro the uiiverse of discourseEf defined

in the fuzzy logic system. In thisork, E consists of 13 elyrees as indicated in earlier sectiofilsen

K, is determined as the ratio of the rangd=do the range of the reghriable:

K = Emax ~ Emin
p —
emax emin

2.0 T

FIGURE 6.5.19 The influence oK, on the belvior of FLCs.

For scalefactorK,, there is the similar analysis leading to

Kd = Dmax ~ Dmin
dmax - dmin

whee D is the uiiverse of discourse for deative error @) defined in the fuzzy logic system. Sini&}
or Ky will narrow the control band, while ige K, or K, will lead to loss of control for tge inputs.
The output gairK, is defined as fatws:

K = umax _umin

° Umax _Umin

It is the ratio of range of real output control acti{oh to the range of its uwerse of discoursel))
defined in the fuzzy logic syster{, acts as an amplificatidiactor of the whole FLC. Figure 6.5.19
shows the influence oK, on the step response simulation of an FLC withfthal rule set used in
Figure 6.5.14Increasing{, results in a shorter rise tim€&he performance trajectory in the linguistic
plane will become steeper for tfiest stage and oscillation occurs. Decreg¥p results in a longer
rise time, and the performance trajectory in the linguistic plane will become moderate dufingt the
stage. But, in our simulation, oscillation still occurr@tiis is because fierentK,, larger or smallg
results in a ew route of the performance trajectory which willigate the diferent rules which might
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cause oscillation. So the influence of output gjp,should be considered together with the change of
the activated rules.

Conclusion

An FLC can perform much better than a conventional controller, such as a PID controller, if the FLC
has been well constructed. The main disadvantage of using FLCs today seems to be the lack of a
systematic procedure for the design of FLCs. The general method for designing an FLC is to use trial
and observation. No useful mathematical tool has yet been developed for the design of an FLC because
of its fuzziness, complexity, and nonparameterization.

There are three significant elements that have notable influence on the behavior of an FLC:

1. The control rules expressed in linguistic language,
2. The membership functions defined for fuzzy subsets, and
3. The scale factors attached to the input and the output gains.

The control rules play the main role in forming the dynamics of FLCs. The rule set can be analyzed
and modified using the performance trajectory technique and evaluated using the dynamic process curve
of the controlled parameter. The membership functions define the “shape” of fuzzy subsets. They should
have appropriate width to avoid noncompleteness and suitable interaction among the fuzzy control rules.
The scale factor{, andKy) and output gainK,) serve as amplification factors.

At present, each application must be individually designed. The initial sets of rules are specifically
set up for different applications. Work is now underway to develop a self-adaptive FLC which will
choose the initial set of rules automatically according to the process dynamics and refine it on the basis
of the global performance evaluation.
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Appendices

Table of Transforms

The following table lists some of the more common transforms used in the analysis of building systems.
More-extensive tables can be found in most mathematics and numerical analysis reference books.

List of Somes- and z-Transforms

Continous-Time Frequency Discrete-Time
Domain Domain Domain
1t=0 O0tz0 — 1
1t=k 0tzk — 7k
1 1 _z
s z-1
t 1 Tz
s (z-1)?
et 1 z
s+a z-e™@
e 1 Tze ™"
(s+ a)2 (Z_e—aT)
- Ca A1-e)
s(s+a) (z—l)(z—e’aT)
eat _ gt & 4e*aT B eibT)
(s+a)(s+b) (z—e'aT)(z—e‘bT)

Special FLC Mathematical Operations
O aggregation operator
© align-turning operator

max-min composition operator

U union operator
0 exists

O in

O for all

O

is the subset of

The aggregation operatdr) is used to define a two-dimensional fuzzy varidblieom fuzzy subsets
A andB (one-dimensional fuzzy variables) as follows:

w(LD) .. . p(LN)

O
0

F:A(E)D B(d):g “F(i’j)
O

i

WMD) o (MN)
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where

g is theith element of the subsaAfe) and (i) is its membership function is thejth element of the
subsetB(d) andpyg(j) is its membership function.

The align-turning operato@) is an operator acting on a two-dimensional fuzzy variable to create a
one-dimensional fuzzy variable, which has a set of membership functions aligned according to a certain
order, as follows:

s=[aDB|°
= (ML) s(0.2)....o g i ). s(M.N))

wherej varies from 1 toN first andi varies from 1 tdM.

An Example of Numeric Calculation for Influence of Membership Function
Suppose that there are two rules:

R1: IF @ is PM) THEN (@ is VS) and

R2: IF @ is PS) THEN ¢ is ST).

For the first rule,

&=(0,0,0,0,0,0,0,01, 05,08, 10, 08, 0.5)

,=(0,0,00,00,0,0,0,0,02 07 10)
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Then the rule can be interpreted into a fuzzy reasoning matrix as follows:

A
1 1
L S I e R e S =

1]
=
0

|

t

1

0o 0o 0o 0 0O 0O 0O OO0 oO 0
0O 0 0 0 0O OO O 0 o 0
0O 0 0o 0 0O0O0O 0 0 o 0
0o 0 0 0 0O 0O O OO0 oO 0
0O 0 0 0 0O OO O 0O o© 0
0o 0o 0o 0 0O 0 0 0 0 ©O 0
0O 0 0 0 0O 0O O OO O 0
0O 0 0 0 O OO O O 01 01
0O 0 0 0 0O 0O 0O O O 02 O05
0o 0 0o 0 0O OO O O 02 o7
0O 0 0o 0 0O OO O O 02 07
0o 0o 0o 0 0O OO O O 02 o7
0O 0 0 0 0O O O O O 02 o05

—_
—
~

where the membership R, for the elementif) of the matrix, uRl(i,j) is

For the second rule,
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e (§) = min{p ()15, ()

& =(0,0,000, 0.1, 05,08, 10, 08, 0.5, 0.1, 0)

4,=(0,0,00,0,0,0,0,0.2 07 10, 0.7, 0.2)

0.1

0.80
109
0.80

O
0.50
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Then the second rule can be interpreted into a fuzzy reasoning matrix as follows:

oy
1

R e I I R S S = I

where the membership R, for the elementif) of the matrix, uRz(i,j) is

Iy

O

e
N

O O O O O O O O o o o o o

~

O O O O O O O O o o o o o

O O OO O 0O O o oo o o o

O O OO O 0O O oo o o o o

O O OO OO O o oo o o o

O O O O O O O O O o o o o

O O OO O 0O O O oo o o o

O O O O o

0.2
0.2
0.2
0.2
0.2
0.1
0

U'Rz(i’j) = min(uéz(i),uaz(j))

O O O o o

0.5
0.8
1.0
0.8
0.5
0.1
0

O O O O o

0.5
0.7
0.7
0.7
0.5
0.1
0

0.20

a%
0.20
0.10

O
08

Section 6

The general fuzzy relation matriXis then constructed as the union of these two rules:

R=RUR

L S e S O L)

=

Py
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O O OO OO O oo oo oo

O O O O OO O oo o o o o

O O O O OO O oo oo oo

o O O O o

0.2
0.2
0.2
0.2
0.2
0.1
0

0.20
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where

p(in]) = max(, (), ()

Assume that there is an inp#) @nd its fuzzy valueé = PM, then the output is expected to be VS
according to the first rule. But now the output is calculated through the fuzzy RatsixXollows:
i=8-R
=PMoR
=(0,0,0,0,0,0,0,01, 05,08, 1.0, 0.8, 0.5 R
=(0,0,0,0,0,0,0,0, 02,07, 0.8, 0.7, 1.0)

where
b (7) = max{minu i) (1. 1))
While
U, =VS
=(0,0,0,0,0,0,0,0,0,0,0.2 07 10)
So,
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